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The dispersal of individuals of a species is the key driving force of various

spatiotemporal phenomena which occur on geographical scales. It can syn-

chronise populations of interacting species, stabilise them, and diversify gene

pools [1–3]. The geographic spread of human infectious diseases such as in-

fluenza, measles and the recent severe acute respiratory syndrome (SARS) is

essentially promoted by human travel which occurs on many length scales

and is sustained by a variety of means of transportation [4–8]. In the light of

increasing international trade, intensified human traffic, and an imminent in-

fluenza A pandemic the knowledge of dynamical and statistical properties of

human dispersal is of fundamental importance and acute [7, 9, 10]. A quan-

titative statistical theory for human travel and concomitant reliable forecasts

would substantially improve and extend existing prevention strategies. De-

spite its crucial role, a quantitative assessment of human dispersal remains

elusive and the opinion that humans disperse diffusively still prevails inmany

models [11]. In this chapter I will report on a recently developed technique

which permits a solid and quantitative assessment of human dispersal on ge-

ographical scales [12]. The key idea is to infer the statistical properties of hu-

man travel by analysing the geographic circulation of individual bank notes

for which comprehensive datasets are collected at the online bill-trackingweb-

site www.wheresgeorge.com. The analysis shows that the distribution of trav-

elling distances decays as a power law, indicating that the movement of bank

notes is reminiscent of superdiffusive, scale free randomwalks known as Lévy

flights [13]. Secondly, the probability of remaining in a small, spatially con-

fined region for a time T is dominated by heavy tails which attenuate superdif-

fusive dispersal. I will show that the dispersal of bank notes can be described

on many spatiotemporal scales by a two parameter continuous time random

walk (CTRW) model to a surprising accuracy. To this end, I will provide a

brief introduction to continuous time random walk theory [14] and will show

that human dispersal is an ambivalent, effectively superdiffusive process.
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1.1
Dispersal Ecology

The notion of dispersal in ecology usually refers to the movement of individ-

uals of a species in their natural environment [1, 3]. The statistical properties

of dispersal can be quantified by the dispersal curve p∆t(∆x). The dispersal
curve reflects the relative frequency of geographic displacements ∆x which

are traversed within a given period of time ∆t. In the ecological literature, the

term “dispersal” is commonly used in the context of the spatial displacement

of individuals of a species between their geographical origin of birth and the

location of their first breeding place, a process which occurs on time scales

of the lifespan of the individuals. Here we make use of the notion of disper-

sal somewhat differently, referring to geographical displacements that occur

on much shorter timescales of the order of days. A large class of dispersal

curves (for example, exponential, gaussian, stretched exponential) exhibit a

characteristic length scale [15]. That is, when interpreted as the probability

of finding a displacement of length ∆x, a length scale can be defined by the

square root of second moment, i.e. σ =
√

〈∆x2〉. The existence of a typical
length scale often justifies the description of dispersal in terms of diffusion

equations on spatiotemporal scales larger than ∆t and σ [16]. Because, if sin-

gle displacements are sufficiently uncorrelated the probability densityW(x, t)
of having traversed a total displacement X(t) after time t is a Gaussian which
obeys Fick’s second law:

∂tW = D ∂2xW, (1.1)

where D = σ2/∆t is the diffusion coefficient. This result is a consequence of

the central limit theorem [17] and does not depend on the precise form of the

short time dispersal curve as long as the variance
〈

∆x2
〉

is finite.

1.2
Diffusive dispersal and reaction kinetics

In population dynamical systems this type of diffusive dispersal is quite fre-

quently combined with a reaction kinetic scheme which accounts for local

interactions between various types of reacting agents, for example various

species in predator-pray systems. Sometimes groups of individuals of a single

species which interact are classified according to some criterion. For instance

in the context of epidemiology a population is often classified according to

their infective status.

In an approximation which neglects the intrinsic fluctuations of the un-

derlying reaction kinetics one obtains for these systems mean field reaction-

diffusion equations, the most prominent example of which is the Fisher equa-
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tion1 [18],

∂t u = λu(1− u) + D∂2xu, (1.2)

for the concentration u(x, t) of a certain class of individuals, a species etc.

1.2.1
SIS dynamics

A paradigmatic system which naturally yields a description in terms of

Eq. (1.2) and which has been used to describe to geographic spread of infec-

tious diseases is the SIS-model in which a local population of N individuals

segregates into the two classes of a) susceptibles S who may catch a disease

and b) infecteds I who transmit it. Transmission is quantified by the rate α

and recovery by the rate β [11]. The reaction scheme could not be simpler:

S+ I
α
−→ 2I I

β
−→ S (1.3)

In the limit of large population size N the dynamics can be approximated by

the set of differential equations

∂t S = −αIS/N, ∂t I = αIS/N − βI. (1.4)

Assuming that the number of individuals is conserved (i.e. I(t) + S(t) = N)
and that disease transmission is more frequent than recovery (α > β) one

obtains for the rescaled relative number of infecteds u(t) = αI(t)/N(α − β) a
single ordinary differential equation (ODE):

∂t u = λu(1− u), (1.5)

where λ = α − β. If, additionally reactants are free to move diffusively one

obtains Eq. (1.2) for the dynamics of the relative number of infecteds u(x, t) as
a function of position and time.

1.2.2
A word of caution

The popularity and success of the Fisher-equation and similiar equations in

the field of theoretical biology can be ascribed to some extend to the fact that

they possess propagating front solutions and that qualitatively similar pat-

terns were observed in historic pandemics, the most prominent example of

which is the bubonic plague pandemic of the 14th century which crossed the

European continent as a wave within three years at an approximate speed of

1) also refered to as the Fisher-Kolmogorov-Petrovsky-Piscounov equa-
tion.



4 1 Money circulation science - fractional dynamics in human mobility

Table 1.1 Human travel and the dispersal of pathogens. The gray areas depict home ranges
of individuals. By virtue of overlapping home ranges and inter-homerange travel an infectious
disease spreads in space. Although humans travel back and forth between home ranges,
pathogens spread continuously in space.

a few kilometers per day. Aside from factors which are known to play a role,

such as social contact networks, age structure, inhomogeneities in local pop-

ulations and inhomogeneities in the geographic distribution of the popula-

tion, there is something fundamentally wrong with the diffusion assumption

on which this class of equations is based upon. Humans (with the exception

maybe of nomads) do not and never did diffuse on timescales much shorter

than their lifespan. A simple argument can be given why this cannot be so.

For a diffusion process the expected time for returning to the point of origin is

infinite [19] (despite the fact that in spatial dimensions d ≤ 2 the probability
of returning is unity). It would not make much sense to have a home if the

expected time to return to it is infinite. However, in the context of the geo-

graphic spread of infectious diseases it does at times make sense to employ

reaction-diffusion equations. That is because the position of what is passed

from human to human, i.e. the pathogens, is what matters and not the po-

sition of single host individuals. Unlike humans, pathogens are passed from

human to human and opposed to humans pathogens have no inclination of

returning. They disperse diffusively and a description in terms of reaction-

diffusion dynamics is justified, see Fig. (1.1).

1.3
Long distance dispersal and Lévy flights

Recently the notion of long distance dispersal (LDD) has been established in

dispersal ecology [20], taking into account the observations that a number of

dispersal curves exhibit long, algebraic tails which forbid the identification

of a typical scale and thus a description of dispersal phenomena based on

diffusion equations. If, for instance, the probability density of traversing a
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distance r in a given period of time ∆t decreases according to

p∆t(r) ∼
1

r1+β
(1.6)

with a tail exponent β < 2, the variance of the displacement magnitude is in-

finite and consequently no typical length scale can be identified. Power-law

distributions are abundant in nature. Metorite sizes, city sizes, income and the

number of species per genus follow power-law distributions [21]. In the con-

text of animal movements such power-laws have been observed in foraging

movements of an increasing number of species, bumble bees and deer [22],

microzooplankton [23], reindeer [24], albatrosses [25], spider monkeys [26]

and jakaals [27], to name a few.

1.3.1
Lévy flights

In physics, random walk processes with a power-law single-step distribution

are known as Lévy flights [14, 28–30]. Due to the lack of scale in the single

steps, Lévy flights are qualitatively different from ordinary random walks.

Unlike ordinary random walks the position XN = ∑
N
n ∆xn after N steps ∆xn

scales with the number of steps according to

XN ∼ N1/β (1.7)

with β < 2. Thus, Lévy flights disperse “faster” than the ordinary N1/2

behavior exhibited by ordinary randomwalks; Lévy flights are superdiffusive.

Furthermore, the probability density for the position p(x,N) for Lévy flights
behaves asymptotically as

p(x,N) ∼ N−D/βLβ

(

x/N1/β
)

(1.8)

where D is the spatial dimension and the function Lβ is known as the sym-

metric Lévy-stable law of index β. This limiting function is a generalization of

the ordinary Gaussian and can be expressed by its Fourier-transform

Lβ(z) =
1

(2π)D/2

∫

dk e−iz·k exp
(

−|k|β
)

. (1.9)

The limiting value β = 2 corresponds to the Gaussian, the limiting function
for ordinary random walks. The lack of scale in a Lévy flight, its superdiffu-

sive nature and the geometrical difference between Lévy flights and ordinary

random walks are illustrated in figure 1.2. Lévy flights, and superdiffusive

random motion was observed in a variety of physical and biological systems,
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Table 1.2 Ordinary random walks and Lévy flights. Left: The trajectory of an ordinary ran-
dom walk in two dimensions, equivalent to Brownian motion on large spatiotemporal scales.
Middle: Unlike Brownian motion, the trajectory of the two-dimensional Cauchy-process, i.e. a
Lévy flight with Lévy exponent β = 1 exhibits local clustering interspersed with long distance
jumps. Right: The distance |XN | from the starting point X0 = 0 of an ordinary random walk
(lower trajectory) and a Lévy flight (β = 1, upper trajectory) as a function of step number N.
The dashed lines indicate the scaling N1/2 and N1/β respectively. Clearly, the Lévy flight is
superdiffusive.

Table 1.3 Worldwide air traffic network. Links represent routes between the 500 most fre-
quented airports. Brightsness indicates the intensity of traffic between nodes.

ranging from transport in chaotic systems [31] to foraging patterns of wander-

ing albatrosses [25] and spider monkeys [26].

1.4
Human travel in the 21st century

Nowadays, humans travel on many spatial scales, ranging from a few to thou-

sands of kilometres over short periods of time. A person in the 21st century

can reach virtually any point on the globe in a matter of days. The intensity
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of modern human travel is convincingly illustrated in Fig.1.3 which depicts

nearly the entire international air traffic network.

The direct quantitative assessment of human movements, however, is dif-

ficult, and a statistically reliable estimate of human dispersal comprising all

spatial scales does not exist. Contemporary models for the spread of infec-

tious diseases across large geographical regions have to make assumptions on

human travel. The notion that humans travel short distances more frequently

than long ones is typically taken into account. Yet, the precise ratio of the fre-

quency of short trips and the frequency of long trips is not known andmust be

assumed. Furthermore, it is generally agreed upon that human travel, being

a complex phenomenon, adheres to complex mathematical rules with a lot of

detail.

Recently, it was shown that the global spread of SARS in 2003 can be re-

produced by a model which takes into account nearly the entire civil avia-

tion network [7, 10]. Despite the high degree of complexity of aviation traffic,

the strong heterogeneity of the network yields an unexpectedly narrow range

of fluctuations, supporting the idea that reliable forecasts of the geographic

spread of disease is possible. Although the model successfully accounts for

the geographic spread on global scales, it cannot account for the spread on

small and intermediate spatial scales. To this end a comprehensive knowl-

edge of human travel on scales ranging from a few to a few thousand kilome-

ters is necessary. However, collecting comprehensive traffic data for all means

of human transportation involved is difficult if not impossible.

1.5
Money as a proxy for human travel

In a recent study [12, 32], the problem of measuring human travel directly

was resolved by trick. Instead of measuring individual human travel paths

directly, the geographic disperal of bank notes in the United States was inves-

tigated instead. The key idea of the project was to use bank note dispersal

as a proxy for human travel on all geographical length scales. The data was

collected from the online bill-tracking website www. wheresgeorge.com. The

idea of this internet game, which was initiated in 1998 by Hank Eskin, is sim-

ple. Individual bank notes are marked by registered users and brought into

circulation. When people come into possession of such marked bank notes,

they can register at the website and report their current location and return the

bank note into circulation. Thus, registered users can monitor the geograph-

ical dispersal of their money. Meanwhile, over 80 millions dollar bills have

been registered and over 3 million users participate in the game. As bank

notes are primarily transported by travelling humans, the statistical proper-
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ties of human travel can be inferred from the dispersal of bank notes with

high spatio-temporal precision.

The original study of human movements was based on the trajectories of

a subset of 464,670 dollar bills obtained from the website and the dispersal

of bank notes in the United States, excluding Alaska and Hawaii, was anal-

ysed. The core data consisted of 1,033,095 reports to the website. From these

reports the geographical displacements r = |x2 − x1| between a first (x1) and
secondary (x2) report location of a bank note and the elapsed time T between

successive reports was computed. The pairs of datapoints {ri, Ti} represented
the core dataset, from which the probability density function (pdf)W(r, t) of
having traveled a distance r after a time t was estimated.

In order to illustrate qualitative features of bank note trajectories, Fig. 1.4

depicts short time trajectories (T < 14 days) originating from threemajor cities

(Seattle, WA, New York, NY, Jacksonville, FL). Succeeding their initial entry,

the majority of bank notes are reported next in the vicinity of the initial entry

location, i.e. r < 10 km (Seattle: 52.7%, New York: 57.7% Jacksonville: 71.4%).

However, a small yet considerable fraction is reported beyond a distance of

800 km (Seattle: 7.8%, New York: 7.4%, Jacksonville: 2.9%).

1.5.1
The lack of scale in money movements

From a total of N = 20, 540 short time displacements one can measure the
probability density p(r) of traversing a distance r in a time interval δT be-

tween one and four days. The result is depicted in Fig. 1.5. A total of 14, 730

(i.e. a fraction Q = 0.71) secondary reports occur outside a short range radius
Lmin = 10 km. Between Lmin and the approximate average east-west exten-
tion of the United States Lmax ≈ 3, 200 km p(r) exhibits power law behaviour
p(r) ∼ r−(1+β) with an exponent β = 0.59± 0.02. For r < Lmin, p(r) increases
linearly with rwhich implies that displacements are distributed uniformly in-

side the disk |x2 − x1| < Lmin.

One might speculate whether the observed lack of scale in p(r) is not a
dynamic property of dispersal but rather imposed by the substantial spatial

inhomogeneity of the United States. For instance, the probability of travel-

ing a distance r might depend strongly on static properties such as the lo-

cal population density. In order to test this hypothesis, p(r) was measured
for three classes of initial entry locations: highly populated metropolitan ar-

eas (191 locations, local population Nloc > 120, 000), cities of intermediate

size (1, 544 locations, local population 120, 000 > Nloc > 22, 000), and small

towns (23, 640 locations, local population Nloc < 22, 000) comprising 35.7%,

29.1% and 25.2% of the entire population of the United States, respectively.

Fig. 1.5 also depicts p(r) for these classes. Despite systematic deviations for
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Table 1.4 Dispersal of bank notes on geographical scales. a: Relative logarithmic densities
of population (cP = log10 ρP/ 〈ρP〉), reports (cR = log10 ρR/ 〈ρR〉) and initial entry (cIE =
log10 ρIE/ 〈ρIE〉) as functions of geographical coordinates. The shades of gray encode the
densities relative to the nation-wide averages (3,109 counties) of 〈ρP〉 = 95.15, 〈ρR〉 = 0.34

and 〈ρIE〉 = 0.15 individuals, reports and initial entries per km2, respectively. b: Short time
trajectories of bank notes originating from three different places. Tags indicate initial, symbols
secondary report locations. Lines represent short time trajectories with travelling time T <

14 days. The inset depicts a close-up of the New York area. Pie charts indicate the relative
number of secondary reports coarsely sorted by distance. The fractions of secondary reports
that occurred at the initial entry location (dark), at short (0 < r < 50 km), intermediate (50 <

r < 800 km) and long (r > 800 km) distances are ordered by increasing brightness. The total
number of initial entries are N = 524 (Seattle), N = 231 (New York), N = 381 (Jacksonville).

short distances, all distributions exhibit an algebraic tail with the same expo-

nent β ≈ 0.6. This confirms that the observed power-law is an intrinsic and
universal property of dispersal, the first experimental evidence that bank note

trajectories are reminiscent of Lévy flights and that their geographic dispersal

is superdiffusive.
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Table 1.5 Quantitative analysis of bank note dispersal. Left: The short time dispersal ker-
nel. The measured probability density function p(r) of traversing a distance r in less than
T = 4 days is depicted by squares. It is computed from an ensemble of 20, 540 short time
displacements. The dashed black line indicates a power law p(r) ∼ r−(1+β) with an exponent
of β = 0.59. Right: p(r) for three classes of initial entry locations (black triangles for metropoli-
tan areas, diamonds for cities of intermediate size, and circles for small towns).

1.6
Is that all?

However, the situation is more complex. If one assumes that the dispersal

of bank notes can be described by a Lévy flight with a short time probability

distribution p(r) as depicted in Fig. 1.5, one can estimate the time Teq for an
initially localised ensemble of bank notes to reach the stationary distribution

(maps in Fig. 1.4). Assume that the Lévy flight evolves in a two-dimensional

region of linear extent L. Furthermore, assume that the single step distribution

for a vectorial displacement x of the random walk can be approximated by

p∆t(x) = (1− Q)δ(x) +Q fδL(x). (1.10)

Here ∆t denotes the typical time between single steps, Q the fraction of walk-

ers which jump a distance d > δL and (1−Q) the fraction which remains in a
disk defined by |x| ≤ δL. The function fδL(x) comprises the power-law in the
single steps, characteristic for Lévy flights:

fδL(x) = C δLβ|x|−(2+β) |x| ≥ δL. (1.11)

Inserting this into Eq. (1.10) one obtains that fδL(x) is normalized to unity and
that the normalization constant C is independent of the microscopic length

δL. The Fourier-transform of p(x) is given by p̃(k) = (1 − Q) + Q f̃δL(k).
The Fourier-transform of the probability density functionWN(x) of the walker
being located at a position x after N steps can be computed in terms of p̃(k)
according to
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Omaha, NE

Table 1.6 Long time dispersal of bank notes with an initial entry in Omaha, NE. Points denote
the location of the second report. Each bill travelled for a time greater than 100 days, with an
average of 289 days. The dashed circle indicates the distance of 800 km from Omaha.

W̃N(k) = p̃(k)N ≈
(

1− QδLβ|k|β
)N

≈ e−QN |δL k|β. (1.12)

The relaxation time in a confined region is provided by the lowest mode

kmin = L/2π. Inserted into (1.12) with N = t/∆t one obtains

Teq ≈ δT/Q (L/2πδL)β = 68 days. (1.13)

Thus, after 2− 3 months bank notes should have reached the equilibrium
distribution. Surprisingly, the long time dispersal data does not reflect a re-

laxation within this time.

Fig. 1.6 shows secondary reports of bank notes with initial entry at Omaha,

NE which have dispersed for times T > 100 days (with an average time 〈T〉 =
289 days). Only 23.6% of the bank notes traveled farther than 800 km, the

majority of 57.3% travelled an intermediate distance 50 < r < 800 km and a

relatively large fraction of 19.1% remained within a radius of 50 km even after

an average time of nearly one year. From Eq. ?? a much higher fraction of bills

is expected to reach the metropolitan areas of the West Coast and the New

England states after this time. This indicates that the simple Lévy flight picture

for dispersal is incomplete. What causes this attenuation of the dispersal?
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1.7
Scaling analysis

In order to understand the underlying cause of attenuated dispersal a useful

theoretical tool is a spatiotemporal scaling analysis. The ordinary Lévy flight

pictures suggests that the process of money dispersal obeys a scaling relation

X(t) ∼ t1/β with an exponent β ≈ 0.6. According to the empirical evidence of
Fig.1.6 the process is slowed down. Thus, a valid question would be: does the

dispersal exhibit a scaling relation

X(t) ∼ t1/µ (1.14)

with a somewhat larger exponent µ > β? If so, in what time window can

one observe such a scaling and what is the exponent? Various methods for

detecting a spatiotemporal scaling exist. One method is this: For a potential

candidate of an exponent µ one computes the distances devided by time of

flights traveled raised to the power of 1/µ, i.e. the quantity

Z(t) =
|X(t)|

t1/µ
. (1.15)

The scalar Z(t) is a stochastic time dependent quantity and in general with a
time-dependent associated pdf p(z, t). If the process X(t) is scaling and for the
right choice of exponent µ, p(z, t) is time-independent

p(z, t) = p(z). (1.16)

As the pdfs p(x, t) and p(z, t) of the processes X(t) and Z(t), respectively, are
related by

p(z, t) =
〈

δ
(

z− |X(t)|/t1/µ
)〉

(1.17)

one can deduce that p(x, t)must fullfill

p(x, t) = t−D/µ fx
(

x/t1/µ
)

, (1.18)

where the function fx is a scaling function. Likewise one obtains for the pdf

p(r, t) of the distance R = |X| traveled the relation

p(r, t) = t−1/µ fr

(

r/t1/µ
)

. (1.19)

The quantity on the left-hand-side can be estimated from the data. Multi-

plied by the temporal factor on the right one obtains a quantity that depends

on the ratio r/t1/µ only. The results of the scaling analysis of the money dis-

persal data is depicted in Fig.1.7. For an exponent

µ ≈ 1
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Table 1.7 Scaling analysis of money dispersal. Left: For times in the range of 50 to 365 days
(indicated by the shade of grey) the quantity t1/µp(r, t) is plotted against the ratio r/t1/µ for a
scaling exponent µ ≈ 1. As all data point collapse on a single curve, the underlying process
X(t) exhibits spatiotemporal scaling. The emergent function fr is the empirical scaling function
of Eq. (1.19). Notice two regimes with power-law behavior. Right: Deviation (dark grey) from
the scaling function are observed, if short times are included (10 < t < 50), consistent with the
short time dispersal kernel of Fig.1.5.

and in a time window of 50 < T < 365 days one finds that the data collapses

on one curve which reflects the empirical scaling function fr . Consequently, in

a time-window of approx two months up to a year, money dispersal exhibits

spatiotemporal scaling. Furthermore, the empirical exponent µ is greater than

the exponent β promoted by the short time dispersal kernel

1 ≈ µ > β ≈ 0.6,

reflecting the qualitative observation that the process is slowed down. Inter-

estingly, the process is still superdiffusive, as µ < 2. What could be a possible

reason for this attenuation?

1.8
Scale free waiting times

A possible, conceptually straightforward explanations of this effect is a strong

impact of the spatial inhomogeneity of the system. For instance, the typical

time of rest in a geographical region might depend on local properties such as

the population density. People might be less likely to leave large cities than

e.g. suburban areas.

In order to address this issue one can investigated the relative proportion

Pi0(t) of bank notes which are reported again in a small (20 km) radius of the
initial entry location i as a function of time (Fig. 1.8). The quantity Pi0(t) is a
local quantity, it estimates the probability for a bank note of being reported

at the initial location at time t a second time. In order to obtain reliable esti-

mates this quantity is averaged over the above classes of initial entry locations
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Table 1.8 The relative proportion P0(t) of secondary reports within a short radius (r0 = 20
km) of the initial entry location as a function of time. Squares depict P0(t) averaged over
25,375 initial entry locations. Triangles, diamonds, and circles show P0(t) for the same classes
as in Fig 1.5. All curves decrease asymptotically as t−ξ with an exponent ξ = 0.6± 0.03 indi-
cated by the solid line. Ordinary diffusion in two dimensions predicts an exponent ξ = 1 (black
dashed line). Lévy flight dispersal with an exponent β = 0.6 as suggested by the short time
dispersal kernel (Fig. 1.5) predicts an even steeper decrease, ξ = 3.33 (dot-dashed line).

(e.g. metropolitan areas, cities of intermediate size and small towns): For all

classes one finds the asymptotic behaviour P0(t) ∼ A t−η with an exponent

η ≈ 0.60± 0.03 and a coefficient A. The observed difference in values of the
coefficient A reflect the impact of the spatial inhomogeneity of the system, i.e.

bank notes are more likely to remain in highly populated areas. The exponent

η, however, is approximately the same for all classeswhich indicates that wait-

ing time and dispersal characteristics are universal and do not depend signif-

icantly on external factors such as the population density. Notice that for a

pure two dimensional Lévy flight with index β the function P0(t) scales as t
−η

with η = 2/β. For β ≈ 0.6 (as put forth by Fig. 1.5) this implies η ≈ 3.33 [19],
i.e. a five fold steeper decrease than observed, which cleary shows that disper-

sal cannot be described by a pure Lévy flight model. The measured decay is

even slower than the decay exhibited by ordinary two-dimensional diffusion

(η = 1 [19]). This is very puzzling.
One way of slowing down dispersal are long periods of rest. In as much as

an algebraic tail in the spatial displacements yields superdiffusive behavior,
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a tail in the probability density ψ(∆t) for times ∆t between successive spatial

displacements of an ordinary random walk can lead to subdiffusion. For in-

stance, if ψ(∆t) ∼ ∆t−(1+α) with α < 1, the position of an ordinary random

walker scales according to X(t) ∼ t2/α [14]. In combination with a power-law

in the spatial displacements this ambivalence yields a competition between

long jumps and long rests and can be responsible for the attenuation of dis-

persal [33].

1.9
Ambivalent Processes

The idea of an antagonistic interplay between scale free displacements and

waiting times can be explored within the framework of continuous time ran-

dom walk (CTRW) introduced by Montroll and Weiss [34]. A CTRW consists

of a succession of random displacements ∆xn and random waiting times ∆tn
each of which is drawn from a corresponding probability density function

p(∆x) and ψ(∆t). Spatial and temporal increments are assumed to be statis-
tically independent. Furthermore, we assume that the spatial distribution is

symmetric, i.e. p(∆x) = p(|∆x|), and since the temporal increments are all
positive ψ(∆t) is single sided. After N iterations the position of the walker
and the elapsed time is given by

XN = ∑
n

∆xn and TN = ∑
n

∆tn,

respectively.

1.9.1
Scaling relation

These two equations relate position and time to step number. However, one

is interested in the functional relationship of position and time. For instance,

if the pdfs p(∆x) and ψ(∆t) possess a steep enough decrease for large argu-
ments, i.e. existing moments, the central limit theorem implies that position

scales with step number according to

XN ∼ N1/2,

and time increases linearly with step number:

TN ∼ N.

Combining both scaling relationships one finds that in this case the process

X(t) exhibits ordinary diffusive scaling

X(t) ∼ t1/2. (1.20)
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If, however both, spatial increments and waiting time possess an alebraic tail

asymptotically, i.e.

p(∆x) ∼
1

|∆x|2+β
and ψ(∆t) ∼

1

∆t1+α
, (1.21)

with spatial and temporal exponents 0 < β < 2 and 0 < α < 1, respectively,

the second moment of ∆x as well as the first moment of ∆t are divergent. This

implies a scaling of position of the form

XN ∼ N1/β, (1.22)

as observed for ordinary Lévy flights but a superlinear scaling of time with

step number as well:

TN ∼ N1/α. (1.23)

The combination of these two scaling relation give a heuristic scaling of posi-

tion with time which depends on the ratio of both exponents α and β

X(t) ∼ tα/β. (1.24)

Comparing with the scaling relation of superdiffusive ordinary Lévy pro-

cesses, X(t) ∼ t1/β, Eq. (1.37) ones sees that long waiting times slow down the

process as the temporal exponent is less than unity. This is easily demon-

strated by a numerical realization of an ambivalent process as depicted in

Fig. 1.9. Clearly long waiting times slow down the process and the scaling

relation (1.24) is valid.

The scaling relation (1.24) implies that by choosing waiting time and jump

length exponents in their valid ranges one can generate processes with any

type of spatiotemporal scaling. The phase diagram (Fig. 1.10) illustrates the

various processes on can generate by varying the exponents α and β and

show the limiting processes.For instance when 2α > β the process is su-

perdiffusive and when 2α < β the process is subdiffusive. The limiting pro-

cesses of ordinary Lévy flights, fractional Brownian motion (regular subdif-

fusion) and ordinary diffusion are attained by choosing (α = 1, 0 < β < 2),
(0 < α < 1, β = 2) and (α = 1, β = 2), respectively. Note that the family
of processes for which the ratio of exponents is α/β = const. exhibit the same
spatiotemporal scaling. This does not imply however, that these processes are

identical and will become clear below. This is best illustrated for a choice of

processes which fullfill 2α = β. These exhibit ordinary diffusive scaling but

nevertheless are not diffusion processes.

In Fig. 1.11 such a quasi-diffusive process is compared with an ordinary dif-

fusion process. This example illutrates that processeswith identical ration α/β
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Table 1.9 Dispersal characteristics of an ordinary Lévy (grey) flight in comparison to an am-
bivalent process (black). The distance |X(t)| from the origin as a function of time is depicted.
The choice of exponents is β = 0.6 for the Lévy process and α = β = 0.6 for the ambiva-
lent process. The dashed lines indicate the heuristic scaling relations |X(t)| = t1/β and
|X(t)| = tα/β, respectively.

are geometrically quite different but also that in order to fully comprehend

the properties of ambivalent anomalous diffusion processes on is required to

compute the pdfW(x, t) for the process X(t) or a dynamical equation for it.

1.9.2
The limiting function for amibivalent processes

The quantity of interest is the position X(t) after time t. The probability den-
sityW(x, t) for this process can be computed in a straightforward fashion [14]
and can be expressed in terms of the spatial distribution p(∆x) and the tem-
poral distribution ψ(∆t). The Fourier-Laplace transform of W(x, t) is given
by

W̃(k, u) =
1− ψ̃(u)

u (1− ψ̃(u) p̃(k)))
, (1.25)
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Table 1.10 Phase diagram for ambivalent anomalous diffusion processes with scale-free
waiting times and scale-free spatial displacements and their limiting processes. The valid
ranges for temporal and spatial exponents α and β are (0, 1] and (0, 2], respectively.

which can be computed within the CTRW framework, for details see [14, 35].

In Eq. (1.25) ψ̃(u) and p̃(k) denote the Laplace- and Fourier transform of ψ(∆t)
and p(∆x), respectively. The probability density W(x, t) is then obtained by
inverse Laplace-Fourier transform

W(x, t) =
1

(2π)3i

∫ c+i∞

c−i∞
du

∫

dk eut−ikxW̃(k, u). (1.26)

When both, the variance of the spatial steps
〈

(∆x)2
〉

= σ2 and the expecta-

tion value 〈∆t〉 = τ of the temporal increments exist the Fourier- and Laplace

transform of p(∆x) and ψ(∆t) are given by

p̃(k) = 1− σ2k2 + O(k4) (1.27)

ψ̃(u) = 1− τu+O(u2), (1.28)

for small arguments, which yield the asymptotics of the process. Inserted into

Eq. (1.25) and employing inversion (1.26) one obtains

W(x, t) = (2πDt)−1e−x
2/2Dt (1.29)
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Table 1.11 Two processes that exhibit diffusive scaling, i.e. |X(t)| ∼ t1/2 (dashed line). The
grey process is ordinary diffusion, the black one an ambivalent anomalous diffusion process
with exponents α = 3/4 and β = 3/2 which implies diffusive scaling. Note that the geometry
of both processes are remarkedly different.

in this limit with D = σ2/τ. Thus, whenever
〈

(∆x)2
〉

and 〈∆t〉 are finite
a CTRW is assymptotically equivalent to ordinary Brownian motion as ex-

pected.

The situation is drastically different, when both, p(∆x) and ψ(∆t) exhibit
algebraic tails of the form

p(∆x) ∼
1

|∆x|2+β
0 < β < 2 and ψ(∆t) ∼

1

∆t1+α
0 < α < 1.(1.30)

In this case one obtains for the asymptotics of p̃(k) and ψ̃(u):

p̃(k) = 1− Dβ|k|
β +O(k2) (1.31)

ψ̃(u) = 1− Dαu
α + O(u). (1.32)

Inserted into (1.25) yields the solution for the process in Fourier-Laplace space:

W̃α,β(k, u) =
u−1

1+ Dα,β|k|β/uα
, (1.33)
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where the constant Dα,β = Dβ/Dα is a generalized diffusion coefficient. After

inverse Laplace transform the solution in (x, t) coordinates reads:

W(x, t) =
1

2π

∫

dk e−ikxEα(−Dα,β|k|
βtα). (1.34)

Here, Eα is the Mittag-Leffler function defined by

Eα(z) =
∞

∑
n=0

zn

Γ(1+ αn)
. (1.35)

which is a generalization of the exponential function to which it is identical

for α = 1. The integrand Eα(−Dα,β|k|
βtα) is the characteristic function of the

process. As it is a function of ktα/β, the probability density W(x, t) can be
expressed as

W(x, t) = t−2α/βLα,β

(

x/tα/β
)

(1.36)

in which the function Lα,β(z) = (2π)−1
∫

dk Eα(−|k|β − ikz) is a universal
scaling function which is characteristic for the process and depends on the

two exponents α and β only. Most importantly, one can extract the spatio

temporal scaling of the ambivalent process from (1.34)

X(t) ∼ tα/β, (1.37)

identical to the relation derived heustically above. The ratio of the exponents

α/β resembles the interplay between sub- and superdiffusion. For β = 2α
the process exhibits the same scaling as ordinary Brownian motion, despite

the crucial difference of infinite moments and a non-Gaussian shape of the

probability density W(x, t). The function W(x, t) is a probability density for
the vectorial displacements x. From Eqs. (1.34) and (1.36) we can compute the

probability density Wr(r, t) for having traveled the scalar distance r = |x| by
integration over all angles:

Wr(r, t) = t−α/βL̃α,β

(

r/tα/β
)

, (1.38)

with a universal scaling function L̃α,β which can be expressed in terms of

Lα,β.

Finally, the validity of the ambilant CTRW model can be tested against the

dollar bill dispersal data by estimating the empirical Wr(r, t) from the en-
tire dataset of a little over half a million displacements and elapse times and

compared to Eq. (1.38). The results of this analysis are compiled in Fig. 1.12.

Comparing with the spatio-temporal scaling promoted by the CTRW model

r(t) ∼ tα/β a value of µ = 1 would imply that temporal and spatial exponents
are the same

α = β. (1.39)
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Table 1.12 The empirical radial probability density functionWr(r, t) and theoretical scaling
function L̃α,β. In order to extract scaling the functionW(r, t) is shown for various but fixed val-

ues of time t between 10 and 365 days as a function of r/t1/µ. For µ ≈ 1.0 the measured (cir-
cles) curves collapse on a single curve and the process exhibits universal scaling. The scaling
curve represents the empirical limiting density F of the process. The asymptotic behaviour for
small (dotted line) and large (dashed line) arguments y = r/t1/µ is given by y−(1−ξ1) and
y−(1+ξ2), respectively, with estimated exponents ξ1 = 0.63± 0.04 and ξ2 = 0.62± 0.02. Ac-
cording to the our model these exponents must fullfill ξ1 = ξ2 = β where β is the exponent of
the asymptotic short time dispersal kernel (Fig. 1.5), i.e. β ≈ 0.6. The superimposed solid line
represents the scaling function predicted by our theory with spatial and temporal exponents
β = 0.6 and α = 0.6.

Combined with the results obtained from the short time analysis yields

α = β = 0.6. (1.40)

A final test of the CTRW model is the comparison of the empirically ob-

served scaling function F with the predicted scaling function L̃α,β for the val-

ues of the exponents in Eq. (1.40). As depicted in Fig. 1.12 the asymptotics

of the empirical curve is given by y−(1−ξ1) and y−(1+ξ2) for small and large

arguments y = r/t1/µ, respectively. Both exponents fulfill ξ1 ≈ ξ2 ≈ 0.6.
By series expansions one can compute the asymptotics of the CTRW scaling

function L̃α,β(y) which gives y
−(1−β) and y−(1+β) for small and large argu-

ments, respectively. Consequently, as β ≈ 0.6 the theory agrees well will the
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observed exponents. For the entire range of y one can compute Lα,β(y) by
numeric integration for β = α = 0.6 and superimpose the theoretical curve
on the empirical one. The agreement is very good and supports the CTRW

model. In summary, this is solid evidence that the dispersal of bank notes can

be accounted for by a simple random walk process with scale free jumps and

scale free waiting times.

The question remains how the dispersal characteristics of bank notes car-

ries over to the dispersal of humans and more importantly to the spread of

human transmitted diseases. In this context one can safely assume that the

power law with exponent β = 0.6 of the short time dispersal kernel for bank
notes reflects the human dispersal kernel as only short times are considered.

However, as opposed to bank notes humans tend to return from distant places

they travelled to. This however, has no impact on the dispersal of pathogens

which, much like bank notes, are passed from person to person and have no

tendency to return.

The issue of long waiting times is more subtle. One might speculate that

the observed algebraic tail in waiting times of bank notes is a property of

bank note dispersal alone. Long waiting times may be caused by bank notes

which exit the money tracking system for a long time, for instance in banks.

However, if this were the case the inter-report time statistics would exhibit a

fat tail. Analysing the interreport time distribution one finds an exponential

decay which suggests that bank notes are passed from person to person at a

constant rate. Furthermore, if one assumes that humans exit small areas at a

constant rate which is equivalent to exponentially distributed waiting times

and that bank notes pass from person to person at a constant rate, the distri-

bution of bank note waiting times would also be exponential in contrast to the

observed power law.

Based on this analysis one can conclude that the dispersal of bank notes

and human transmitted diseases can be accounted for by a continuous time

random walk process incorporating scale free jumps as well as long waiting

time in between displacements.

However, a word of caution is necessary at this point. The above model for

the dispersal of bank notes is only an initial step towards a better understand-

ing of human mobility and universal features of human transportation net-

works on global scales. One obvious reason is that the CTRW model, despite

its wonderful agreement with the data, is a heuristic model and represents

a population averaged model. As alluded to above, spatial heterogeneities

do impact on the dispersal characterstics quantitatively although they do not

change the qualitative features of the dispersal process. This is analogous to

a situation in which a Browian particle diffuses on a two-dimensional liquid

layer which in turn is heterogeneously heated from below. A position depen-

dent temperature profile would introduce a position dependent diffusion co-
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efficient for the particle which changes the local diffusion properties. Despite

the fact that such a particle performs ordinary diffusion at every location one

would have to incorporate a the position dependent diffusion coefficient in a

quantitative description of the particle’s motion in the corresponding Fokker-

Planck equation. Replacing the position dependent diffusion coefficient by a

spatially averaged quantity only gives an incomplete description of the sys-

tem. A promising line of investigation could then be provided by the concept

of superstatistics introduced by Beck and Cohen [36] that is introduced and

explained in detail in Chapter (??) in this book.

In the context of human travel behavior, one would have to determine posi-

tion dependencies in the generalized diffusion coefficient for which the orig-

inally explored wheresgeorge dataset is insufficient. Alternatively, one could

investigate these processes within the framework of complex embedded net-

works in which places in the United States are nodes of the network and the

flux of bills weighted, non-negative links between them. This approach intro-

duces a number of powerful analytic an numeric technique which in my view

could complete our understanding of human travel in our globalized world.
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