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The rapid worldwide spread of severe acute respiratory syndrome
demonstrated the potential threat an infectious disease poses in a
closely interconnected and interdependent world. Here we intro-
duce a probabilistic model that describes the worldwide spread of
infectious diseases and demonstrate that a forecast of the geo-
graphical spread of epidemics is indeed possible. This model
combines a stochastic local infection dynamics among individuals
with stochastic transport in a worldwide network, taking into
account national and international civil aviation traffic. Our simu-
lations of the severe acute respiratory syndrome outbreak are in
surprisingly good agreement with published case reports. We
show that the high degree of predictability is caused by the strong
heterogeneity of the network. Our model can be used to predict
the worldwide spread of future infectious diseases and to identify
endangered regions in advance. The performance of different
control strategies is analyzed, and our simulations show that a
quick and focused reaction is essential to inhibiting the global
spread of epidemics.

he application of mathematical modeling to the spread of

epidemics has a long history and was initiated by Daniel
Bernoulli’s (1) work on the effect of cowpox inoculation on the
spread of smallpox in 1760. Most studies concentrate on the local
temporal development of diseases and epidemics. Their geo-
graphical spread is less well understood, although important
progress has been achieved in a number of case studies (2-4).
The key question, as well as difficulty, is how to include spatial
effects and quantify the dispersal of individuals. This problem
has been studied with some effort in various ecological systems,
for instance, in plant dispersal by seeds (5). Today’s volume,
speed, and nonlocality of human travel (Fig. 1), as well as the
rapid worldwide spread of severe acute respiratory syndrome
(SARS) (Fig. 2), demonstrate that modern epidemics cannot be
accounted for by local diffusion models that are applicable only
as long as the mean distance traveled by individuals is small
compared to geographical distances. These local reaction—
diffusion models generically lead to epidemic wavefronts, which
were observed, for example, in the geotemporal spread of the
Black Death in Europe from 1347 to 1350 (6-10).

Here we focus on mechanisms of the worldwide spread of
infectious diseases. Our model consists of two parts: a local
infection dynamics and the global traveling dynamics of individ-
uals similar to the models investigated in ref. 11. However, both
constituents of our model are treated on a stochastic level, taking
full account of fluctuations of disease transmission, latency, and
recovery on the one hand and of the geographical dispersal of
individuals on the other. Furthermore, we incorporate nearly the
entire civil aviation network.

Local Infection Dynamics

In the standard deterministic systemic inflammatory response
(SIR) model for infectious diseases, a population with N indi-
viduals is categorized according to its infection status: suscep-
tibles (), infectious (1), or recovered and immune (R) (6, 12).
The dynamics that specifies the flow among these categories is
given by
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ds/dt = —asj, dj/dt = asj — BJ, [1]
where s = S/N and j = I/N denote the relative number of
susceptibles and infecteds, respectively. The relative number of
recovered individualsr = R/N is obtained by conservation of the
entire population, i.e., () = 1 — j(t) — s(¢), and 7 = B! is the
average infectious period. The key quantity describing the in-
fection is the basic reproduction number py = «/B, which is the
average number of secondary infections transmitted by an
infectious individual in an otherwise uninfected population. If
po > 1 and the initial relative number of susceptibles are greater
than a critical value s. = 1/py, an epidemic develops (dj/d¢ > 0).
As the number of infected individuals increases, the fraction of
susceptibles s decreases, and thus the number of contacts of
infected individuals with susceptibles decreases until s = s,
when the epidemic reaches its maximum and subsequently
decays.

The above SIR model incorporates the underlying mechanism
of transmission and recovery dynamics and has been able to
account for experimental data in a number of cases. However,
transmission of and recovery from an infection are intrinsically
stochastic processes, and the deterministic SIR model does not
account for fluctuations. These fluctuations are particularly
important at the beginning of an epidemic when the number of
infecteds is very small.

In this regime, a probabilistic description must be used.
Schematically, the stochastic infection dynamics is given by

a B
S+I1—2I, I—0. [2]

The first reaction reflects the fact that an encounter of an
infected individual with a susceptible results in two infecteds at
a probability rate «; the second indicates that infecteds are
removed (recover) at a rate 3 and effectively disappear from the
population. The quantity of interest is the probability p(S, I; t)
of finding a number S of susceptibles and I infecteds in a
population of size N at time ¢. Assuming that the process is
Markovian on the relevant time scales, the dynamics of this
probability is governed by the master equation (13)

ap(S, I; 1) = j% S+ DI -1 pS+1,1—1:0)
+BU+ 1) p(S, I+ 1;1)

(63
- (N SIp - BI> p(S, ;1) 131
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Fig. 1. Global aviation network. A geographical representation of the civil
aviation trafficamong the 500 largest international airports in >100 different
countries is shown. Each line represents a direct connection between airports.
The color encodes the number of passengers per day (see color code at the
bottom) traveling between two airports. The network accounts for >95% of
the international civil aviation traffic. For each pair (/,j) of airports, we checked
all flights departing from airport j and arriving at airport i. The amount of
passengers carried by a specific flight within 1 week can be estimated by the
size of the aircraft (We used manufacturer capacity information on >150
different aircraft types) times the number of days the flight operates in 1
week. The sum of all flights yields the passengers per week, i.e., M;in Eq. 7. We
computed the total passenger capacity 3 Mj; of each airport j per week and
found very good agreement with independently obtained airport capacities.

In addition to this dynamics, one must specify the initial condi-
tion p(S, I; t = t¢), which is typically assumed to be a small but
fixed number of infecteds Iy, i.e., p(S, I; t = to) = 817,05.N—1,-

The relation of the probabilistic master equation 3 to the
deterministic SIR model (1) can be made in the limit of a large but
finite population, i.e., N >> 1. In this limit, one can approximate the
master equation by a Fokker—Planck equation by means of an
expansion in terms of conditional moments [Kramers—Moyal ex-
pansion (13); see supporting information, which is published on the
PNAS web site]. The associated description in terms of stochastic
Langevin equations reads

1
ds/dt = —asj + —— \/a5j§1(f) [4]
\/N
4i/dt = as — Bj — = \asi&(0) + = BiE)
] = aSJ - ] - — OlS] / ] .
N N

[5]

Here, the independent Gaussian white noise forces & (f) and &(f)
reflect the fluctuations of transmission and recovery, respectively.
Note that the magnitude of the fluctuations are = 1/\/N and
disappear in the limit N — 0, in which case Eqgs. 1 are recovered.
However, for large but finite N, a crucial difference is apparent:
Egs. 4 and 5 contain fluctuating forces, and N is a parameter of the
system. A careful analysis shows that even for very large populations
(i.e., N >> 1), fluctuations play a prominent role in the initial phase
of an epidemic outbreak and cannot be neglected. For instance,
even when pg > 0, a small initial number of infecteds in a population
may not necessarily lead to an outbreak that cannot be accounted
for by the deterministic model.

Dispersal on the Aviation Network

As individuals travel around the world, the disease may spread
from one place to another. To quantify the traveling behavior of
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Fig.2. Global spread of SARS. (A) Geographical representation of the global
spreading of probable SARS cases on May 30, 2003, as reported by the WHO
and Centers for Disease Control and Prevention. The first cases of SARS
emerged in mid-November 2002 in Guangdong Province, China (17). The
disease was then carried to Hong Kong on the February 21, 2003, and began
spreading around the world along international air travel routes, because
tourists and the medical doctors who treated the early cases traveled inter-
nationally. As the disease moved out of southern China, the first hot zones of
SARS were Hong Kong, Singapore, Hanoi (Vietnam), and Toronto (Canada),
but soon cases in Taiwan, Thailand, the U.S., Europe, and elsewhere were
reported. (B) Geographical representation of the results of our simulations 90
days after aninitial infection in Hong Kong, The simulation corresponds to the
real SARS infection at the end of May 2003. Because our simulations cannot
describe the infection in China, where the disease started in November 2002,
we used the WHO data for China.

individuals, we have analyzed all national and international civil
flights among the 500 largest airports by passenger capacity.*
This analysis yields the global aviation network shown in Fig. 1;
further details of the data collection are compiled in the
supporting information. The strength of a connection between
two airports is given by passenger capacity, i.e., the number of
passengers that travel a given route per day.

We incorporate the global dispersion of individuals into our
model by dividing the population into M local urban populations
labeled i containing N; individuals. For each i, the number of
susceptible and infected individuals is given by S; and /;, respec-
tively. In each urban area, the infection dynamics is governed by
master equation 3.

Stochastic dispersal of individuals is defined by a matrix vy; of
transition probability rates among populations

Yii Yij

Si_)Sj Ii_)Ija i’jzla "'JMa [6]

where vy; = 0. Along the same lines as presented above, one can
formulate a master equation for the pair of vectors X = {Sj,
I, ..., Sm, Im}, which defines the stochastic state of the system.
This master equation is provided explicitly in Eq. 3, supporting
information.

To account for the global spread of an epidemic via the
aviation network, one needs to specify the matrix vy;;. Because the

*Data on flight schedules and airport information are available from OAG Worldwide
Limited, London (www.oag.com), and the International Air Transport Association, Geneva
(www.iata.org).
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Table 1. A comparison of the SARS case reports provided by the WHO and the results of our
simulation for all countries with a reported case number =4

Simulation
WHO WHO

Country 5/20/2003 5/30/2003 Average n Minimum Maximum
Hong Kong 1,718 1,739 1,951 0.35 1,373.9 2,770.4
Taiwan 383 676 318.2 0.55 184.0 550.3
Singapore 206 206 136.6 0.68 69.4 268.7
Japan — — 60.4 0.84 26.6 137.0
Canada 140 188 41.8 0.94 16.4 106.6
u.s. 67 66 65.9 0.84 28.4 152.7
Vietnam 63 63 49.2 0.86 20.7 116.3
Philippines 12 12 30.0 0.97 6.2 50.7
Germany 9 10 14.4 1.1 4.8 43.1
The Netherlands — — 5.9 1.09 2.0 17.6
Bangladesh — — 10 1.15 3.2 31.6
Mongolia 9 9 — — — —
Italy 9 9 53 1.02 1.9 14.6
Thailand 8 8 35.4 0.89 14.5 86.8
France 7 7 7.6 1.09 2.6 22.6
Australia 6 6 27.0 1.05 10.1 72.5
Malaysia 7 5 17.7 1.05 6.2 50.7
United Kingdom 4 4 16.7 1.04 5.9 47.0

The expected number of infecteds predicted by our model is estimated by the average <1,000 realizations of
the stochastic model. The epidemic was simulation for t = 90 days after the initial outbreak of SARS in Hong Kong
(February 19, 2003), yielding a simulation end of May 20, 2003. The range designated by columns 6 and 7 was
computed by means of the fluctuation measure 7 (see text), which is approximately one for all countries.

global exchange of individuals among urban areas is carried out
by airborne travel, one can estimate the probability rate matrix
vij by t. We assume that an individual remains in an urban area
for some time before traveling to another region. A flightj — i
is chosen according to the weights

wy = M; / S M, (7]

where M; is the number of passengers per unit time that depart
from an airport in region j and arrive at an airport in region i.
The matrix w accounts for the overall connectivity of the aviation
network as well as for the heterogeneity in the strength of the
connections. Denoting the typical time period, individuals re-
main at by 7;; the matrix v;; is expressed in terms of w;; according
to y; = w;/7. If we assume that each airport is surrounded by
a catchment area with a population N, the typical time individ-
uals remain at i is given by 7; = N;/2;Mj;. If the capacity of airport
i reflects the need of the associated catchment area (i.e.,
N;*Z;Mj;), the waiting times 7; are identical for all i, i.e., 7, = 7=
v~!, which implies y; = ywj;. In our model, the global rate v is
a free parameter. To verify its validity, we apply our model to the
SARS outbreak. The rate y can be computed from the ratio of
the number of infected individuals in Hong Kong to the number
of infected individuals outside Hong Kong, which is provided by
the World Health Organization (WHO) data.’ For the local
infection dynamics, we use a simple extension of the above
stochastic SIR model: The categories S, I, and R are completed
by a category L of latent individuals who have been infected but
are not yet infectious themselves, accounting for the latency of
the disease. In our simulations, individuals remain in the latent
or infectious stage for periods drawn from the delay distribution
provided in figure 2 in ref. 14. In our simulation, we chose

SData on the SARS outbreak are available from the WHO, Geneva (www.who.int/csr/sars/
en), and the Center for Disease Control and Prevention, Atlanta (www.cdc.gov/ncidod/
sars).
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random infection times, the distribution of which is known for
SARS (14). In a realistic simulation, the basic reproduction
number py cannot be assumed to be constant over time. Suc-
cessful control measures, for instance, generally decrease py. We
chose a time-dependent py(¢), as provided by refs. 15 and 16.

Results of Simulations

Fig. 2 depicts a geographical representation of the results of our
simulations. Initially, an infected individual was placed in Hong
Kong. For this initial condition, we simulated 1,000 realizations
of the stochastic model and computed the mean value (I(¢)) of
the number of infecteds at each node i = 1,..., M of the
network. Because the size of catchment areas varies on many
scales, the fluctuation range is best quantified by the means of
the relative variance of z = log I, i.e., m V(z2) = (2)%/(z).
In our simulations, we computed this measure for every i of the
network. Fig. 2 shows the prediction of our model for the spread
of SARS at ¢ = 90 days after the initial outbreak in Hong Kong
(February 19, 2003), corresponding to the May 20, 2003 out-
break. The results of our simulations are in remarkable agree-
ment with the worldwide spread of SARS as reported by the
WHO (compare Fig. 2): There is an almost one-to-one corre-
spondence between infected countries as predicted by the sim-
ulations and the WHO data.

Also, the orders of magnitude of the numbers of infected
individuals in a country agree (Table 1). Although for most
countries the cases reported by the WHO lie within the fluctu-
ation range, two deviations between the reported cases and the
predictions of the simulation are apparent: Our simulations
predict a relatively high number of SARS cases in Japan
(between 26.6 and 137.0). However, the Japanese government
reported no confirmed case (only five suspected cases) of SARS
in Japan as of May 30, 2003. How a single realization may deviate
from the expectation can be seen from the difference between
the simulation and the reported cases in the U.S. and Canada.
The simulations show that on average the U.S. should have a
higher number of SARS cases than Canada, although the
opposite was reported by the WHO. The impact of the inherent
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Fig.3. Demonstration of the impact of fluctuations on inhomogeneous networks. Two confined populations with exchange of individuals are shown. In each
population, the dynamics is governed by the SIR reaction scheme (6). Individuals travel from one population to the other at a rate y. Parametersare Ny = Ng =
10,000, Ry = 4, and an initial number of infecteds Iy = 20 in population A. (Left) The probability p(y) of an outbreak occurring in population B as a function
of transition rate y. (Insets) Histograms of the time lag T between the outbreaks in A and B for those realizations for which an outbreak occurs in B. The circles
are results of the simulations of 100,000 realizations; the solid curve is the analytic result of Eq. 8. (Right) A star-shaped network with a central population A
connected to M — 1 populations By, . . ., By with rates 4, . . ., yum-1. The cumulated variance (see text) for a star network with 32 populations is depicted as a
function of the average transmission rate y. Two cases are exemplified: equal rates (circles) and distributed rates according to Eq. 10 with ymax/¥min =~ 1,000
(squares). The solid lines show the analytical results given by Eqs. 8 and 9. Parameters are Na = Ng = 10,000, Ry = 4, and an initial number of infecteds /lop = 20
in population A. The numerical values are obtained by calculating the variance of the fluctuations of 100 different realizations of the epidemic outbreak for

each y.

stochasticity of the infection and traveling dynamics is discussed
below.

The Impact of Fluctuations

Bearing in mind the low number of infections and the small value
of po for SARS, the high degree of predictability, i.e., the low
impact of fluctuations on the network level, is rather surprising,
especially because our simulations take into account the full
spectrum of fluctuations of disease transmission, recovery, and
dispersal, and that the system evolves on a highly complex
network. Naively, one expects that dispersal fluctuations be-
tween two given populations are amplified as the epidemic
spreads globally, and that no prediction can be made. To clarify
this important point, consider the system of two confined
populations 4 and B, which exchange individuals as depicted in

Fig. 4.
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Fig. 3. For simplicity, we assume that both populations have the
same size (i.e., No = Ng = N), and individuals traverse at a rate
v. Now assume that initially a small number of infected I, is
introduced to population 4 without any infecteds contained in
B. For a sufficiently high number of infecteds in A, an epidemic
occurs. For y > 0, infecteds are introduced to B, and a
subsequent outbreak may occur in B after a time lag 7. Fig. 3
depicts the results of simulations for two populations with n =
10,000 and py = 4. Various realizations of the time course /(?)
and Ip(¢) of the epidemic in both populations were computed.
The initial number of infecteds in the population was I(t = 0) =
Iy = 20. Fig. 3 Left depicts the probability p(-y) of an outbreak
occurring in population B as a function if the transition rate .
For large enough rates, the probability is nearly unity, because
a sufficient number of infecteds is introduced to B. For very low

Inhomogeneity of the aviation network and control strategies. (A and B) Geographical representation of the results of two simulations of hypothetical

SARS outbreaks 90 days after an initial infection in New York (A) and London (B) for the same parameters and color code as in Fig. 2. (C) Impact and control of
epidemics. The probability pn(v) of having to vaccinate a fraction v of the population to prevent the epidemic from spreading, if an initial infected individual
is permitted to travel n = 1 (red), 2 (blue), and 3 (green) times. The probability p,(v) is estimated by placing the infected individual on a node i (black dot) of
the network. The fraction v; associated with node i is given by the number of susceptibles in a subnetwork that can be reached by the infected individual after
n = 1,2and 3 steps. Histogramming v; for all nodes i yields an estimate for p,(v). The light-blue curve depicts the strong impact of isolating only 2% of the largest

cities after an initial outbreak (n = 2) and is to be compared to the blue curve.
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rates v, no infecteds are introduced to B during the time span of
the epidemic in 4, and thus p(y) — 0 as y — 0. For intermediate
values of v, the probability p(vy) is neither one nor unity, and the
time course in population B cannot be predicted with certainty.
The function p(vy) is given by

p(y) =1—exp(—y/v*), [8]

where the critical rate y* is a function of the parameters py and
N. Fig. 3 Insets depict histograms of the time lag T for those
realizations for which an outbreak occurred in B. Each histogram
corresponds to a different transition rate y. The smaller v, the
higher the variability in 7. Note that even in a range in which
p(y) = 1, the time lag T is still a stochastic quantity with a high
degree of variance.

Consequently, the introduction of stochastic exchange of
infected individuals leads to a lack of predictability in the time
of onset of the initially uninfected population. In light of the
analysis of two populations, the predictability in the case of
SARS on the aviation network seems even more puzzling.

The situation changes drastically in networks that exhibit a high
degree of variability in the rate matrix +y;. Clearly, this is the case for
the aviation network. Consider the simple network depicted in Fig.
3. Each population contains N individuals. A central population A
is coupled to a set of M—1 surrounding populations By, . . ., By—1.
Assume that initially a number of infecteds Iy is introduced to the
central population A4, such that an outbreak occurs. The entire set
of rates {v;}j=1, . m—1 determines the behavior in the surrounding
populations. If all rates +; are identical and very small, we expect no
infection to occur in the Bj; for large enough v, an outbreak will
occur in every B;. In the aviation network, however, transition rates
are distributed on many scales, and the response of the network to
a central outbreak depends on the statistical properties of this
distribution denoted by ¢g(vy). To quantify the reaction of the
network, we introduce for each surrounding population a binary
number §withj =1,...,M — 1, which is unity if an outbreak occurs
in B; and zero if it does not. According to Eq. 8, for a given rate v,
this quantity is a random number with a conditional probability
density p(&y) = (1 — p()) 8(&) + p(y) 3(& — 1). The variability
of the network is thence quantified by the cumulative variance per
population, and we define

4
= M- Zvar(fi) = J dyp(y)(1 = p(v))q(y) 9]

as a measure for the uncertainty of the network response. If, for
example, g(y) = d(y — ¥), i.e., all transition rates are identical and
equal to ¥, then o(y) = 4 p(¥)(1 — p(¥), which is unity for p(y) =
1/2. Comparing with Eq. 8, we see that when y = ¥* log 2, the
system with identical transition rates y; = 7y exhibits the highest
degree of unpredictability when the rates are of the order of the
critical rate defined by Eq. 8. The function o(7) is shown in Fig. 3.
Now, assume rates y; are drawn from a distribution

1 1

P S 10
log('Ymax/’Ymin) Y [ ]

Y max = Y = Y min>

qly) =

which implies a high degree of variance within the interval [ ymin,
Ymax] (i.€., y;is distributed uniformly on a logarithmic scale). This

1. Bernoulli, D. (1760) Mém. Math. Phys. Acad. R. Sci. Paris, 1-45.

2. Keeling, M. J., Woolhouse, M. E. J., Shaw, D. J., Matthews, L, Chase-Topping,
M, Haydon, D. T., Cornell, S. J., Kappey, J, Wilesmith, J & Grenfell, B. T.
(2001) Science 294, 813-817.

3. Smith, D. L., Lucey, B, Waller, L. A,, Childs, J. E & Real, L. A. (2002) Proc.
Natl. Acad. Sci. USA 99, 3668-3672.

4. Keeling, M. J., Woolhouse, M. E. J., May, R. M., Davies, G & Grenfell, B. T.
(2003) Nature 421, 136-142.

15128 | www.pnas.org/cgi/doi/10.1073/pnas.0308344101

high variability in rates drastically changes the predictability of
the system. Inserting into Eq. 9 yields o(%) for strongly distrib-
uted rates. In Fig. 3, this function is compared to a system of
identical transition rates. On the one hand, for intermediate
values of y ~ v*, the predictability is much higher than in the
system of identical rates. This is a rather counterintuitive result.
Despite the additional randomness in transition rates, the degree
of determinism is increased.

Control Strategies

Fig. 4 exemplifies how our model can be used to predict
endangered regions if the origin of a future epidemic is located
quickly. Fig. 4 depicts simulations of the global spread of SARS
at t = 90 days after hypothetical outbreaks in New York and
London, respectively. Despite the worldwide spread of the
epidemic in each case, the degree of infection of each country
differs considerably, which has important consequences for
control strategies.

Vaccination of a fraction of the population reduces the
fraction of susceptibles and thus yields a smaller effective
reproduction number p. If a sufficiently large fraction is vacci-
nated, p drops below 1, and the epidemic becomes extinct. The
global aviation network can be used to estimate the fraction of
the global population that needs to be vaccinated to prevent the
epidemic from spreading. Fig. 4 demonstrates that a quick
response to an initial outbreak is necessary if global vaccination
is to be avoided. Also depicted is the probability p,(v) of having
to vaccinate a fraction v of the population if an infected
individual is randomly placed in one of the cities and permitted
to travel N = 1, 2, or 3 times. For the majority of originating
cities, the initial spread is regionally confined, and thus a quick
response to an outbreak requires only a vaccination of a small
fraction of the population. However, if the infected individual
travels twice, the expected fraction (v) of the population that
needs to be vaccinated is considerable (74.58%). For n = 3,
global vaccination is necessary.

As a reaction to a new epidemic outbreak, it might be
advantageous to impose travel restrictions to inhibit the spread.
Here we compare two strategies: (i) the shutdown of individual
connections and (i) the isolation of cities. Our simulations show
that an isolation of only 2% of the largest cities already drastically
reduces (v) (with N = 2) from 74.58% to 37.50% (compare the
blue and light-blue curves in Fig. 4). In contrast, a shutdown of
the strongest connections in the network is not nearly as
effective. To obtain a similar reduction of (v), the top 27.5% of
connections would need to be taken off the network. Thus, our
analysis shows that a remarkable success is guaranteed if the
largest cities are isolated as a response to an outbreak.

In a globalized world, with millions of passengers traveling
around the world week by week, infectious diseases may spread
rapidly around the world. We believe that a detailed analysis of
the aviation network represents a cornerstone for the develop-
ment of efficient quarantine strategies to prevent diseases from
spreading. Because our model is based on a microscopic de-
scription of traveling individuals, our approach may be consid-
ered a reference point for the development and simulation of
control strategies for future epidemics.
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