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The dynamic spatial redistribution of individuals is a key driving
force of various spatiotemporal phenomena on geographical
scales. It can synchronize populations of interacting species,
stabilize them, and diversify gene pools1–3. Human travel, for
example, is responsible for the geographical spread of human
infectious disease4–9. In the light of increasing international trade,
intensified human mobility and the imminent threat of an influ-
enza A epidemic10, the knowledge of dynamical and statistical
properties of human travel is of fundamental importance. Despite
its crucial role, a quantitative assessment of these properties on
geographical scales remains elusive, and the assumption that
humans disperse diffusively still prevails in models. Here we
report on a solid and quantitative assessment of human travelling
statistics by analysing the circulation of bank notes in the United
States. Using a comprehensive data set of over a million individual
displacements, we find that dispersal is anomalous in two ways.
First, the distribution of travelling distances decays as a power law,
indicating that trajectories of bank notes are reminiscent of scale-
free random walks known as Lévy flights. Second, the probability
of remaining in a small, spatially confined region for a time T is
dominated by algebraically long tails that attenuate the super-
diffusive spread. We show that human travelling behaviour can be
described mathematically on many spatiotemporal scales by a
two-parameter continuous-time random walk model to a surpris-
ing accuracy, and conclude that human travel on geographical
scales is an ambivalent and effectively superdiffusive process.
Quantitative aspects of dispersal in ecology are based on the

dispersal curve, which quantifies the relative frequency of travel
distances of individuals as a function of geographical distance11. A
large class of dispersal curves (for example, exponential, gaussian,
stretched exponential) permits the identification of a typical length
scale by the variance of the displacement length or equivalent
quantities. When interpreted as the probability P(r) of finding a
displacement of length r in a short time dt, the existence of a typical
length scale often justifies the description of dispersal in terms of
diffusion equations on large spatiotemporal scales. If, however, P(r)
lacks a typical length scale, that is P(r) , r2(1þb) with b , 2, the
diffusion approximation fails. In physics, random processes with
such a single-step distribution are known as Lévy flights12–16 (see
Supplementary Information). Recently, the related notion of long-
distance-dispersal (LDD) has been established in dispersal ecology17,
taking into account the observation that dispersal curves of a number
of species show power-law tails owing to long-range movements18–21.
(In ecological literature, the term ‘dispersal’ is commonly used in the
context of the spatial displacement of individuals of a species between
their geographical origin of birth and the location of their first
breeding place. Here we use the term dispersal to refer to geographi-
cal displacements that occur on much shorter timescales, that is, due
to travel by various means of transportation.)
Nowadays, humans travel on many spatial scales, ranging from a

few to thousands of kilometres over short periods of time. The direct

quantitative assessment of human movements, however, is difficult,
and a statistically reliable estimate of human dispersal comprising all
spatial scales does not exist. The central aim of this work is to use data
collected at online bill-tracking websites (which monitor the world-
wide dispersal of large numbers of individual bank notes) to infer
the statistical properties of human dispersal with very high spatio-
temporal precision. Our analysis of humanmovement is based on the
trajectories of 464,670 dollar bills obtained from the bill-tracking
system www.wheresgeorge.com. We analysed the dispersal of bank
notes in the United States, excluding Alaska and Hawaii. The core
data consists of 1,033,095 reports to the bill-tracking website. From
these reports we calculated the geographical displacements r ¼
jx2 2 x1j between a first (x1) and secondary (x2) report location of
a bank note and the elapsed time T between successive reports.
In order to illustrate qualitative features of bank note trajectories,

Fig. 1b depicts short-time trajectories (T , 14 days) originating
from three major US cities: Seattle, New York and Jacksonville.
After their initial entry into the tracking system, most bank notes
are next reported in the vicinity of the initial entry location, that is
jx2 2 x1j# 10km (Seattle, 52.7%; New York, 57.7%; Jacksonville,
71.4%). However, a small but considerable fraction is reported
beyond a distance of 800 km (Seattle, 7.8%; New York, 7.4%;
Jacksonville, 2.9%).
From a total of 20,540 short-time trajectories originating across

the United States, we measured the probability P(r) of traversing a
distance r in a time interval dTof 1–4 days (Fig. 1c). A total of 14,730
(that is, a fraction Q ¼ 0.71) secondary reports occurred outside a
short range radius Lmin ¼ 10 km. Between Lmin and the approximate
average East–West extension of the United States, Lmax < 3,200 km,
the kernel shows power-law behaviour P(r) , r2(1þb) with an
exponent b ¼ 0.59 ^ 0.02. For r , Lmin, P(r) increases linearly
with r, which implies that displacements are distributed uniformly
inside the disk jx2 2 x1j # Lmin. We measured P(r) for three classes
of initial entry locations: highly populated metropolitan areas (191
sites, local population N loc . 120,000), cities of intermediate size
(1,544 sites, local population 120,000 . N loc . 22,000) and small
towns (23,640 sites, local population N loc , 22,000), comprising
35.7%, 29.1% and 25.2% of the entire population of the United
States, respectively. The inset in Fig. 1c shows P(r) for these classes.
Despite systematic deviations for short distances, all distributions
show an algebraic tail with the same exponent b < 0.6, which
confirms that the observed power-law is an intrinsic and universal
property of dispersal.
However, the situation is more complex. If we assume that the

dispersal of bank notes can be described by a Lévy flight with a short-
time probability distribution P(r), we can estimate the timeTeq for an
initially localized ensemble of bank notes to reach the stationary
distribution22 (maps in Fig. 1a), obtaining a value of Teq < 68 days
(see Supplementary Information). Thus, after 2–3months, bank
notes should have reached an equilibrium distribution. Surprisingly,
the long-time dispersal data does not reflect a relaxation within this
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time. Figure 1b shows secondary reports of bank notes with initial
entry at Omaha that have dispersed for times T . 100 days (with an
average time kTl ¼ 289 days). Only 23.6% of the bank notes travelled
farther than 800 km, whereas 57.3% travelled an intermediate dis-
tance 50 , r , 800 km, and a relatively large fraction of 19.1%
remained within a radius of 50 km, even after an average time of
nearly one year. From the computed value Teq < 68 days, a much
higher fraction of bills is expected to reach the metropolitan areas of
the West coast and the New England states after this time. This is
sufficient evidence that the simple Lévy flight picture for dispersal is
incomplete. What causes this attenuation of dispersal?
Two alternative explanations might account for this effect. The

slowing down might be caused by strong spatial inhomogeneities of
the system. People might be less likely to leave large cities than for
example, suburban areas. Alternatively, long periods of rest might be
an intrinsic temporal property of dispersal. In asmuch as an algebraic
tail in spatial displacements yields superdiffusive behaviour, a tail in
the probability density f(t) for times t between successive spatial
displacements of an ordinary randomwalk can lead to subdiffusion15

(see Supplementary Information). Here, the ambivalence between
scale-free spatial displacements and scale-free periods of rest can be
responsible for the observed attenuation of superdiffusion.
In order to address this issue we investigated the relative pro-

portion Pi
0ðtÞ of bank notes which are reported in a small (20 km)

radius of the initial entry location i as a function of time (Fig. 1d).
The quantity Pi

0ðtÞ estimates the probability of a bank note being
reported at the initial location at time t. We computed Pi

0ðtÞ for
metropolitan areas, cities of intermediate size and small towns: for all
classes we found the asymptotic behaviour P0(t) , At2h, with the
same exponent h ¼ 0.6 ^ 0.03, which indicates that waiting time
and dispersal characteristics are universal. Notice that for a pure
Lévy flight with index b in two dimensions, P0(t) scales with time
as t22/b (dashed red line)15. For b < 0.6 (as suggested by Fig. 1c) this
implies h < 3.33. This is a fivefold steeper decrease than observed,
which clearly shows that dispersal cannot be described by a pure Lévy
flight. The measured decay is even slower than the decay expected
from ordinary two-dimensional diffusion (h ¼ 1, dashed black line).
Therefore, we conclude that the slow decay in P0(t) reflects the effect

Figure 1 | Dispersal of bank notes and humans on geographical scales.
a, Relative logarithmic densities of population (cP ¼ logrP/krPl), report
(cR ¼ logrR/krRl) and initial entry (c IE ¼ logr IE/kr IEl) as functions of
geographical coordinates. Colour-code shows densities relative to the
nationwide averages (3,109 counties) of krPl ¼ 95.15, krRl ¼ 0.34 and
kr IEl ¼ 0.15 individuals, reports and initial entries per km2, respectively.
b, Trajectories of bank notes originating from four different places. City
names indicate initial location, symbols secondary report locations. Lines
represent short-time trajectories with travelling time T , 14 days. Lines are
omitted for the long-time trajectories (initial entry in Omaha) with
T . 100 days. The inset depicts a close-up view of the New York area. Pie
charts indicate the relative number of secondary reports coarsely sorted by
distance. The fractions of secondary reports that occurred at the initial entry
location (dark), at short (0 , r , 50 km), intermediate (50 , r , 800 km)
and long (r . 800 km) distances are ordered by increasing brightness of hue.
The total number of initial entries are N ¼ 2,055 (Omaha), N ¼ 524
(Seattle), N ¼ 231 (New York), N ¼ 381 (Jacksonville). c, The short-time

dispersal kernel. The measured probability density function P(r) of
traversing a distance r in less than T ¼ 4 days is depicted in blue symbols.
It is computed from an ensemble of 20,540 short-time displacements. The
dashed black line indicates a power law P(r),r2(1 þ b) with an exponent of
b ¼ 0.59. The inset shows P(r) for three classes of initial entry locations
(black triangles for metropolitan areas, diamonds for cities of intermediate
size, circles for small towns). Their decay is consistent with the measured
exponent b ¼ 0.59 (dashed line). d, The relative proportion P0(t) of
secondary reports within a short radius (r0 ¼ 20 km) of the initial entry
location as a function of time. Blue squares show P0(t) averaged over 25,375
initial entry locations. Black triangles, diamonds, and circles show P0(t) for
the same classes as c. All curves decrease asymptotically as t2h with an
exponent h ¼ 0.60 ^ 0.03 indicated by the blue dashed line. Ordinary
diffusion in two dimensions predicts an exponent h ¼ 1.0 (black dashed
line). Lévy flight dispersal with an exponent b ¼ 0.6 as suggested by b
predicts an even steeper decrease, h ¼ 3.33 (red dashed line).

NATURE|Vol 439|26 January 2006 LETTERS

463



of an algebraic tail in the distribution of rests f(t) between displace-
ments. Indeed, if f(t) , t2(1þa) with a , 1, then h ¼ a and con-
sequently a ¼ 0.60 ^ 0.03. This suggests that an algebraic tail in the
distribution of rests f(t) is responsible for slowing down the super-
diffusive dispersal advanced by the short time dispersal kernel in
Fig. 1c.
In order to model the antagonistic interplay between scale-

free displacements and waiting times, we use the framework of
continuous-time random walks (CTRW) introduced by Montroll
and Weiss23. A CTRW consists of a succession of random displace-
ments dxn and random waiting times dtn, each of which is drawn
from a corresponding probability density function P(dxn) and f(dt).
AfterN iterations, the position of the walker and the elapsed time are
given by xN ¼

P
ndxn and tN ¼

P
ndtn: The quantity of interest is

the position x(t) after time t and the associated probability density
W(x,t) that can be computed within CTRW theory. For displace-
ments with finite variance j2 and waiting times with finite mean t,
such a CTRW yields ordinary diffusion asymptotically, that is
›tWðx; tÞ ¼D›2xWðx; tÞ with a diffusion coefficient D ¼ j2/t.
In contrast, we assume here that both P(dxn) and f(dt) show

algebraic tails, that is PðdxnÞ, jdxnj
2ð1þbÞ

and fðdtÞ, jdtj
2ð1þaÞ

;
for which j2 and t are infinite. In this case we can derive a bifractional
diffusion equation for the dynamics of W(x,t):

›at Wðx; tÞ ¼Da;b›
b
jxj
Wðx; tÞ ð1Þ

In this equation, the symbols ›at and ›
b
jxj
denote fractional derivatives

that are non-local and depend on the tail exponents a and b. The
constant Da,b is a generalized diffusion coefficient (see Supplemen-
tary Information). Equation (1) represents the core dynamical
equation of our model. Using methods of fractional calculus we
can solve this equation and obtain the probability Wr(r,t) of having
traversed a distance r at time t:

Wr ðr; tÞ ¼ t2a=bLa;bðr=t
a=bÞ ð2Þ

where La,b is a universal scaling function that represents the
characteristics of the process. Equation (2) implies that the typical
distance travelled scales according to r(t) , t1/m, where m ¼ b/a.
Thus, depending on the ratio of spatial and temporal exponents, the
random walk can be effectively either superdiffusive (b , 2a),
subdiffusive (b . 2a), or quasidiffusive (b ¼ 2a) (see Supplemen-
tary Information). For the exponents observed in the dispersal data
(b ¼ 0.59 ^ 0.02 and a ¼ 0.60 ^ 0.03) the theory predicts a tem-
poral scaling exponent in the vicinity of unity, m ¼ 0.98 ^ 0.08.
Therefore, dispersal remains superdiffusive despite long periods of
rest.
The validity of our model can be tested by estimatingWr(r,t) from

the entire data set of a little over half a million displacements and
elapse times. The scaling property is best extracted from the data by a
transformation to logarithmic coordinates z ¼ log10r, t ¼ log10t and
the associated probability density Wz(z,t). If the original process
scales according to r(t) , t1/m, the density Wz(z,t) is a function of
z 2 t/m only. Figure 2a shows that scaling occurs in a time window of
approximately seven days to one year. From the slope (blue line), we
obtain a scaling exponent m ¼ 1.05 ^ 0.02, which agrees well with
our model.
Finally, we investigated the degree to which bank note dispersal

shows a scaling density as predicted by ourmodel (that is, the relation
outlined in equation(2)). Figure 2b shows t 1/mWr(r,t) extracted
from data versus the ratio y ¼ r/t1/m. The exponent m ¼ 1.05 was
set to the value obtained in Fig. 2a. The collapse of the data on a single
curve indicates that in the chosen time interval of 10–365 days, bank
note dispersal shows a universal scaling function. The asymptotic
behaviour of the empirical curve is given by y2ð12y1Þ and y2ð1þy2Þ

for small and large arguments, respectively. Both exponents fulfil
y1 < y2 < 0.6. We compared the empirical curve with the theoreti-
cal prediction of our model. By series expansions, we can compute
the asymptotics of the limiting function La,b(y) in equation (2),

Figure 2 | Spatiotemporal scaling of bank note dispersal. a, The probability
density Wz(z,t) of having travelled a logarithmic distance z ¼ log10r at
logarithmic time t ¼ log10t. The middle segment indicates the scaling
regime between one week and one year. The superimposed red line
represents the scaling behaviour r(t) , t1/m with exponent m ¼ 1.05 ^ 0.05.
It is compared to the diffusive scaling (black dashed line) and the scaling of a
pure Lévy process with exponent b ¼ 0.6 (white dashed line). The upper
dashed grey line shows the approximate linear extent Lmax ¼ 3,200 km of
the United States. b, The measured radial probability density Wr(r,t) and
theoretical scaling function La,b(r/t1/m) (equation (2)). In order to extract
the quality of scaling, the function t1/mWr(r,t) is shown for various but fixed
values of t from 10–365 days as a function of the rescaled distance r/t1/m,
where the exponent m was set to the value determined in a. As the measured
(circles) curves collapse on a single curve, the process shows universal
scaling. The scaling curve represents the limiting density of the process. The
asymptotic behaviour for small (grey dotted line) and large (grey dashed
line) arguments y ¼ r/t1/m is given by y2ð12y1Þ and y2ð1þy2Þ, respectively, with
estimated exponents y1 ¼ 0.63 ^ 0.04 and y2 ¼ 0.62 ^ 0.02. According to
our model, these exponents must fulfill y1 ¼ y2 ¼ b, where b is the
exponent of the asymptotic short-time dispersal kernel (Fig. 1c), that is
b < 0.6. The superimposed red line represents t1/mWr(r,t) predicted by our
theory, with spatial and temporal exponents a ¼ 0.6 and b ¼ 0.6,
respectively. The coloured dashed lines represent t1/mWr(r,t) for a pure Lévy
flight with b ¼ 0.6 at times t ¼ 10 and t ¼ 365 days. The curves do not
collapse because the pure Lévy flight shows the wrong spatiotemporal
scaling. Furthermore, the limiting curves strongly deviate from the data for
small arguments.
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giving y2(12b) and y2(1þb) for small and large y, respectively.
Consequently, as b < 0.6 (Fig. 1c), the theory agrees well will the
observed exponents. For the entire range of y we computed La,b(y)
by numeric integration for a ¼ b ¼ 0.6, and superimposed the
theoretical curve on the empirical one. The agreement is very
satisfactory. In summary, our analysis gives solid evidence that the
dispersal of bank notes can be accounted for by our model.
The question remains how the dispersal characteristics of bank

notes carry over to the travelling behaviour of humans. In this
context, we can conclude that the power law with exponent
b ¼ 0.6 of the short-time dispersal kernel for bank notes reflects
the human dispersal kernel, because the exponent remains
unchanged for short time intervals of T ¼ 2, 4, 7 and 14 days. The
issue of long waiting times is more subtle. One might speculate that
the observed algebraic tail inwaiting times of bank notes is a property
of bank note dispersal alone. Long waiting times might be caused by
bank notes that exit the money-tracking system for a long time, for
instance in banks. However, if this were the case the inter-report time
statistics would have an algebraic tail as well. Analysing the inter-
report time distribution, we found an exponential decay, suggesting
that bank notes are passed from person to person at a constant rate. If
we assume that humans exit small areas at a constant rate that is
equivalent to exponentially distributed waiting times, and that bank
notes pass from person to person at a constant rate, the distribution
of bank note waiting times would also be exponential, in contrast to
the observed power law. To our minds, this reasoning permits no
other conclusion than a lack of scale in humanwaiting-time statistics.
We obtained further support for our results from a comparison with
two independent human travel data sets: long-distance travel on the
United States aviation network8 (flight schedules and airport infor-
mation, www.oag.com; International Air Transport Association,
www.iata.org) and the latest survey on long-distance travel con-
ducted by the United States Bureau of Transportation Statistics
(www.bts.gov) (see Supplementary Information). Both agree well
with our findings and support our conclusions.
On the basis of our analysis, we conclude that the dispersal of bank

notes and human travel behaviour can be described by a continuous-
time random-walk process that incorporates scale-free jumps as well
as long waiting times between displacements. To our knowledge, this
is the first empirical evidence for such an ambivalent process in
nature. We believe that these results can serve as a starting point for
the development of a new class of models for the spread of human
infectious diseases, because universal features of human travel can
now be accounted for in a quantitative way.
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