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Human Mobility and Spatial Disease Dynamics
Dirk Brockmann

1.1
Introduction and Motivation

The understanding of human mobility and the development of qualitative
models as well as quantitative theories for it is of key importance in the re-
search of human infectious disease dynamics on large geographical scales.
Xia et al. state succintly [1]:

“Spatial transmission of directly transmitted infectious diseases is ulti-
mately tied to movement by the hosts. The network of spatial spread
(the disease’s spatial coupling) may therefore be expected to be related
to the transportation network within the host metapopulation”

In our globalized world, mobility and traffic have reached a complexity and
volume of unprecedented degree. More than 60 million people travel billions
of miles on more than 2 million international flights each week as illustrated
in Figure 1.1. Hundreds of millions of people commute on a complex web
of highways and railroads, most of which operate at their maximum capac-
ity. Despite this increasing connectivity and our ability to visit virtually ev-
ery place on this planet in a matter of days, the magnitude and intensity of
modern human traffic has made human society more susceptible to threats
intimately connected to human travel. For instance, long-range human mobil-
ity is responsible for the geographical spread of emergent infectious diseases
and plays a key role in human mediated bioinvasion, the dominant factor in
the global biodiversity crisis. The prime example of modern epidemics is the
severe acute respiratory syndrome (SARS). The SARS virus first appeared in
a Chinese province from where it reached Hong Kong in 2003. It proliferated
and spread around the world in a matter of weeks infecting nearly 10 000 in-
dividuals worldwide with a mortality of approximately 10%. Since then, epi-
demiologist have devoted an increasing amount of attention and modeling
effort to understand in what way and to what extent modern traffic networks
impact and determine the dynamics of emergent diseases, particularly facing
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Figure 1.1 The worldwide air transportation network. More than three
billion passengers travel on this network each year, on flights connect-
ing approximately 4000 airports. The heterogeneity of the network is
reflected by the flux of individuals between nodes, ranging from a few
to more than 10 000 passengers per day between nodes.

an immanent H5N1 flu pandemic and the potential threat of the use of small-
pox in bioterroist attacks [2, 3].

In a number of recent studies the statistical properties of particular human
transportation networks were investigated in detail with a focus on air trans-
portation and long-distance traffic [4–7]. However, human mobility occurs on
many length scales, ranging from commuting traffic on short distances to long-
range travel by air, and involves diverse methods of transportation (public
transportation, roads, highways, trains, and air transportation). No compre-
hensive study exists that incorporates traffic on all spatial scales. This would
require the collection and compilation of data for various transportation net-
works into a multi-component dataset; a difficult, if not impossible, task partic-
ularly on an international scale. Whereas central statistical features of air trans-
portation networks have been studied in detail, it remains unclear whether
these properties remain unchanged in traffic networks that comprise all other
means of transportation and spatial scales. How do these properties depend on
the length scale? Are they universal? In what way do they change as a function
of length scale? What are the national and regional differences and similarities?
In order to understand human mobility in the 21st century and the dynamics of
associated phenomena, particularly the geographic spread of modern diseases,
it is of fundamental importance to answer these questions.
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Once a more comprehensive understanding of human mobility exists, the
next step in the context of spatial epidemics is the translation of traffic infor-
mation and topological features of complex traffic networks into dynamical
components of models that can account for the spatial spread of infectious
diseases. These type of models have been devised in the past on a wide range
of complexity levels. On one end of the spectrum are reaction diffusion models
in which local nonlinear infection dynamics is coupled with diffusive disper-
sal. Spatial heterogeneity in the host population is generally neglected in these
models [8]. The type of questions which these models address are, for exam-
ple; Under what circumstance does a propagating epidemic wave develop?
How does the speed of the wave depend on the parameters of the model?
What impact does spatial heterogeneity have on the disease dynamics, and
what are the statistical regularities in spatial patterns?

On the other end of the spectrum are sophisticated models that are con-
structed with a high degree of detail [2, 3, 9, 10]. Examples of these models
are agent-based simulation frameworks in which social, spatial and tempo-
ral heterogeneity are taken into account. Frequently these models contain en-
tire global transportation networks and extrapolations where empirical data
is lacking based on known statistics.

This chapter contains two parts. In the first part I will discuss recent pro-
gess in the study of multi-length scale transportation networks. I will show
that, despite their complexity, these networks exhibit a set of scaling relations
and statistical regularities. In the second part I will review how the topologi-
cal features of traffic networks can be incorporated in models for disease dy-
namics and show that the way topology is translated into dynamics can have
a profound impact on the overall disease dynamics.

1.2
Quantitative Assessments of Human Mobility

1.2.1
Preliminary Considerations

Formally we can address the issue of mobile individuals by the collection of
individual trajectories of each of N individuals of a population, that is the col-
lection {�xi(t)}i=1,...,N where each individual is labeled i. Clearly the measure-
ment and the prediction of each individual’s location �xi(t) as a function of time
is beyond a researcher’s grasp. Some very recent experiments, however, em-
ploying high-precision measurements based on GPS (global positioning via
satellite) or using cell phone location as a proxy for �xi(t) have made it possi-
ble at least to measure, individual trajectories with unexpected accuracy [11].
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The next best approach to human mobility is based on population averages.
To this end it is useful to define the microscopic time dependent density of
individuals

u(�x, t) =
1
A

N
∑

i
δ(�x −�xi(t)) (1.1)

where A is the spatial area under consideration. The global density of individ-
uals in A is given by the integral of u, that is

u0 =
N
A

=
∫

d�xu(�x, t) . (1.2)

The expecation value 〈u(�x, t)〉 of the microscopic density is related to the prob-
ability pi(�x, t) of individual i being located at �x by

〈u(�x, t)〉 =
1
A

N
∑

i
〈δ(�x −�xi(t))〉

=
1
A

N
∑

i
pi(�x, t) (1.3)

Because for each i even the quantitiy pi(�x, t) is usually inaccessible to measure-
ment, a widespread assumption made in models is that individuals are indis-
tinguishable and that although �xi(t) �= �xj(t) one assumes pi(�x, t) = pj(�x, t)
and thus

〈u(�x, t)〉 =
1
A

p(�x, t) . (1.4)

Despite its simplicity, this equation is fundamental to the probabilistic inter-
pretation of models that are based on the time-evolution of concentrations. It
connects the probabilistic quantity p(�x, t) to the measurable density of indi-
viduals. The second assumption in the conceptual setup of analyzing human
mobility is an ergodicity assumption, that is given by

1
ΔA

∫
dAu(�x, t) ≈ 〈u(�x, t)〉 , (1.5)

in which ΔA � A is an area small in comparison to the spatial size of the
entire system but large enough such that sufficient individuals reside in it at
all times such that the spatial average (left-hand side of (1.5)) is approximately
equal to the expected density. The degree to which these assumptions are ful-
filled determines the right choice of model. Two structurally different models
reflect a range of possibilities.

On one hand, if p(�x, t) varies little in magnitude and the global density
N/A is large enough, one can find a microscopic scale ΔA such that a suf-
ficient amount of individuals are always contained in each microscopic unit



1.2 Quantitative Assessments of Human Mobility 5

area for (1.5) to be valid. One a large scale one can then consider

n(�x, t) = ΔA〈u(�x, t)〉 (1.6)

a spatially continuous deterministic quantity and introduce dynamical equa-
tions for it.

Humans, however, are typically clustered in urban areas, cities, towns and
villages in which the density of individuals is high as opposed to areas in
between where is it negligible. In this case a metapopulation approach is more
suitable. In this approach communities are defined by p(�x, t) exceeding some
threshold in some spatially compact area Ωn and one labels these regions by
a discrete index n. The size of each community n is given by

Nn(t) = Ωn〈u(�x, t)〉 . (1.7)

In these models mobility of individuals is equivalent to exchange of them be-
tween the discrete set of communities. In metapopulation models Nn(t) is typ-
ically considered a deterministic quantity for which (1.5) holds. The coupling
of these communities is conveyed by mobility networks that quantify the ex-
change of individuals between them. Usually these traffic networks are quan-
tified by a matrix Wnm ≥ 0 whose elements reflect the traffic flux between
communities.

1.2.2
The Lack of Scale in Human Mobility

By far the most studied human mobility system, particularly in the context of
human infectious disease dynamics is the worldwide air transportation sys-
tem, see Figure 1.1. The network is defined by a passenger flux matrix each el-
ement Wnm of which quantifies the number of passengers that travel between
airport m and n. In a series of studies, air transportation networks were in-
vestigated using methods of complex network theory [4, 7, 12] and have been
employed as the backbone in a set of models that attempt to account for the
global spread of emergent human infectious diseases [5, 6, 13].

However, one of the central drawbacks of focusing on air transportation
alone is that only long-range traffic is covered by it. If, for instance, one sets
out to develop a model for disease dynamics on small to intermediate length
scales, for example in countries such as Germany or the UK, air transportation
does play a role, but an insignificant one compared to traffic on the network
of highways and railways. Confronted with the difficulty of compiling a com-
prehensive dataset of human mobility covering all length scales, the idea was
recently developed to employ proxies of human travel that indirectly pro-
vide information on mobility patterns of individuals. In [14] this idea was
employed for the first time by analyzing the geographical circulation of bank
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notes. In the study, data was analyzed which had been collected at the on-
line bill tracker www.wheresgeorge.com founded by Hank Eskin in 1998. The
idea of the game is simple. Individual dollars bills are marked and enter cir-
culation. When new users come into possession of a marked bill, they can
register at the site and report the current location of the bill by entering the
zip code. Successive reports of a bill yield a spatio-temporal trajectory with
a very high resolution. Since 1998 wheresgeorge.com has become the largest
bill-tracking website worldwide with more than three million registered users
and more than 140 million registered bills. Approximately 10% of all bills have
had hits yielding a total of more than 14 million single trajectories consisting
of origin �X1 (initial entry location) and destination �X2 (hit location). Figure 1.2
illustrates a sample of trajectories of bills with initial entries in five US cities.
Shown are journeys of bills that lasted a week or less. Clearly, the majority
of bills remains in the vicinity of their initial entry, yet a small but significant
number of bills traversed distances of the order of the size of the US, consis-
tent with the intuitive notion that short trips occur more frequently than long
ones. One of the key results of the 2006 study was the first quantitative esti-
mate of the probability p(r) of a bill traversing a distance r in a short period
of time, a direct estimate of the probability of humans performing journeys of
this distance in a short period of time. This quantity is shown in Figure 1.2.
This estimate was based on a dataset of 464 670 individual bills. On a range of
distances between 10 and 3500 km, this probability follows an inverse power
law, that is

p(r) ∼ 1
r1+μ

(1.8)

with an exponent μ ≈ 0.6. Despite the multitude of means of transportation
involved, the underlying complexity of human travel behavior and the strong
spatial heterogeneity of the United States, the probability follows this simple
mathematical law indicating that human mobility is governed by underlying
universal rules. Moreover, the specific functional form has important conse-
quences. If one assumes that individual bills perform a spatial random walk
with an arbitrary probability distribution p(r) for distances at every step, one
can ask: What is the typical distance |�X(t)| from the initial starting point as
a function of time? For ordinary random walks (Brownian motion) which are
ubiquitous in the natural sciences, the behavior of |�X(t)| is determined by the
standard deviation σ =

√
〈r2〉 − 〈r〉2 of the single steps and irrespective of the

particular shape of the distance scales according to the “square-root law”, that
is |�X(t)| ∼ √

t, a direct consequence of the central limit theorem [15]. How-
ever, for a power law of the type observed in the dispersal of bank notes the
variance diverges for exponents μ < 2 and the situation is more complex. It
implies that the dispersal of bank notes lacks a typical length scale, is frac-
tal and the trajectories of bills are reminiscent of a particular class of random
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Figure 1.2 Short time trajectories of dollar
bills in the United States. (a) Lines connect
origin and destination locations of bills that
traveled for less than a week. The majority
of bills remain in the vicinity of their starting
point, yet a small but significant fraction of
bills travel long distances. (b) The probability
p(r) of traveling a distance r in a short period
of time of T less than a week. The dashed
line indicates the inverse power law of Equa-
tion (1.8) in the text. The colors encode the
subsets of trajectories that started in large

cities (blue), intermediate cities (green) and
small towns (red). Despite systematic de-
viations for small distances, the asymptotic
power law behavior is the same for all sub-
sets indicating the universality of dispersal.
(c) Two-dimensional trajectory of and ordinary
random walk or Brownian motion. (d) Trajec-
tory of a superdiffusive Lévy flight. The Lévy
flight geometry consists of small clusters
interconnected by long leaps. The dispersal
of bank notes is reminiscent of Lévy flight
trajectories such as the one depicted.

walks known as Lévy flights [16, 17]. Lévy flights, as opposed to ordinary
random walks are anomalously diffusive, they exhibit a scaling relation that
depends on the exponent:

|�X(t)| ∼ t1/μ . (1.9)

Because Lévy flights are superdiffusive, they disperse faster than ordinary
random walks, and their geometrical structure differs considerable from ordi-
nary random walks, see Figure 1.2. The discovery that the dispersal of bank
notes and therefore human travel behavior lacks a scale and is related to Lévy
flights was a major breakthrough in understanding human mobility on global
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scales. This result is particularly intriguing because power laws of the type
above and Lévy flight dispersal have been observed in foraging animals such
as the albatross, deer and marine predators as well [18–20] and have since
then been validated by a recent study on mobile phone dynamics [11], indi-
cating that emergent mobility patterns are determined by similar underlying
rules.

1.3
Statistical Properties and Scaling Laws in Multi-Scale Mobility Networks

Figure 1.3 illustrates a proxy network obtained from the flux of dollars in the
United States, including all spatial scales. This network is defined by 3109
nodes (counties in the United States excluding Alaska and Hawaii) connected
by weights Wnm that represent the flux rate of bills from county m to n in
units of bills per day. The entire network structure is thus encoded in the
3109 × 3109 flux matrix �W. As each location has a well-defined geographi-
cal position, this multi-scale US traffic network can be visualized as a geo-
graphically embedded network as shown in the figure. Qualitatively, one can
see that prominent East coast–West coast fluxes exist in the network. Yet the
strongest connections are the short to intermediate length scale connections,
as opposed to the air transportation network that serves long distance only.
Although every day 2.35 million passengers travel on the US air transporta-
tion network, this represents only a small subset of the multi-scale traffic net-
work. The histogram in Figure 1.3 illustrates these properties more quan-
titatively, comparing the relative frequency of distances in the multi-scale
wheresgeorge network to the air transportation network. Clearly, the majority
of distances served by air transportation, peaks around 1000 km, whereas dis-
tances in the multi-scale network are broadly distributed across a wide range
from a few to a few thousand kilometers.

In order to understand human mobility on all spatial scales it is there-
fore essential to include all means of transportation indirectly involved in the
wheresgeorge money circulation network. The bill circulation network quan-
tified by the flux matrix can give important insight into the statistical features
of human mobility across the United States. In order to quantify the statistical
features of the network we will concentrate on the flux of bills in and out of
a node given by

Fin
n = ∑

m
Wnm Fout

n = ∑
m

Wmn (1.10)

respectively. These flux measures are a direct proxy for the overall traffic ca-
pacity of a node in the network. Furthermore, we will investigate the in- and
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Figure 1.3 (a) The flux of dollar bills in the
United States. Each line represents the flux
of bills between the counties it connects.
The color encodes the magnitude of the
flux, bright lines indicate heavy flux, dark
lines weak flux. The figure illustrates the
strong heterogeneity of money dispersal,
short distance connections typically exhibit
strong fluxes, long distance connections
are weaker but significant. (b) The popula-
tion density of the United States spatially
resolved and colored on a logscale. (c) The

US air transportation network. The lines in-
dicate connections between the 413 major
airports in the US. The color encodes the
magnitude of connections in passengers per
day. (d) Relative frequency of distances in
the multi-scale traffic network obtained from
the wheresgeorge dataset (red) compared
to the air-transportation network (blue). Air
transportation mainly serves long distance
whereas multi-scale traffic exhibits a broad
distribution ranging from a few to a few thou-
sand kilometers.

out-degree of a node defined according to

kin
n = ∑

m
Anm kout

n = ∑
m

Amn (1.11)

where the elements Anm are entries of the adjacency matrix A. These elements
are either one or zero depending on whether or not nodes are connected. The
degree of a node quantifies the connectivity of a node, that is to how many
other nodes a given node is connected. A first important but expected fea-
ture of the multi-scale mobility network is its degree of symmetry. Figure 1.4
depicts the correlation of the flux of bills in and out of each node and a correl-
ogram of the in- and out-degrees. These quantities exhibit a linear relationship



10 1 Human Mobility and Spatial Disease Dynamics

Figure 1.4 Symmetry of the money circulation network. The figures
depict the correlation Fin

n and Fout
n of flux of bill in and out and the

in- and out-degree kin
n and kout

n of a node n for all 3109 nodes in the
network. The dashed lines represent the linear relationships.

subject to fluctuations,

Fin
n ≈ Fout

n kin
n ≈ kout

n (1.12)

indicated by the dashed lines in the figure. Note also that the magnitude of
the flux values ranges over nearly four orders of magnitude, a first indication
of the strong heterogeneity of the network.

This high degree of heterogeneity is further illustrated by the cumulative
distributions of the weights, the fluxes and the degrees of all the nodes in the
network as depicted in Figure 1.5. All quantities are broadly distributed across
a wide range of scales. Very similar broad distributions have been observed
in studies of the air transportion networks [4, 7, 12]. A very important issue
in transportation theory is the development of a plausible evolutionary mech-
anism that can account for the emergence of these distributions; a task that
has not been accomplished so far. There is no plausible “theory” for human
traffic networks, as of today, that predicts the precise functional form of the
distributions shown in Figure 1.5.

1.3.1
Scaling Laws in the Topological Features of Multi-Scale
Transportation Networks

In order to reveal additional structure in multi-scale human mobility networks
we investigated the functional relation of the quantities defined above; that is,
what is the functional relation of fluxes and degrees with respect to the popu-
lation size of a node? Figure 1.6 illustrates the statistical relationship between
the population size of a node and the flux of bills into a node. The dashed line
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Figure 1.5 Heterogeneity of multi-scale human mobility networks.
Cumulative probability distributions of the population size of the nodes
(a), the weight matrix elements Wnm (b), the flux of bills Fn in and out
of nodes, see (c) and the degree kn of the nodes (d). The broadness
of these distributions is a consequence of the strong heterogeneity
of the network.

Figure 1.6 The functional dependence of influx Fin (a) and in-degree
kin (b) on the population size P of a node. The flux of bill depends lin-
early on the population size (gray dashed line), whereas the degree
exhibits a sublinear dependence (pink dashed line).
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in the figure represents a linear relationship with slope one, indicating that
traffic through a node grows linearly with the population size.

F(P) ∼ P (1.13)

Intuitively, this is expected, as the larger the population of a node the more
traffic flows in and out of it. However, correlating the degree of a node against
the population size indicates a sublinear relationship:

k(P) ∼ Pξ (1.14)

with an exponent ξ ≈ 0.7, contrasting the intuitive notion that the connec-
tivity of a node also grows linearly with population size. From the scaling
relations (1.13) and (1.14) we can determine an important property of multi-
scale mobility networks. The typical strength of a connection is given by the
ratio of flux and degree and one obtains heuristically

W ∼ P1−ξ (1.15)

This implies that larger counties are not only connected to a larger number
of other counties but also that the typical strength of every connection is
stronger. Both relations are determined by the universal exponent ξ = 0.7 and
these relations hold over nearly four orders of magnitude, a surprising regu-
larity exhibited by the multi-scale mobility network. Again, no theory exists
that can account for these scaling relations and the value of the exponent.

1.4
Spatially Extended Epidemic Models

In summary, two prominent features of multi-scale human mobility networks
emerged in the analysis above. (1) Networks exhibit a strong heterogeneity,
the distribution of weights, traffic fluxes and populations sizes of community
range over many orders of magnitude. (2) Although the interaction magni-
tude in terms of traffic intensities decreases with distance, the observed power
laws indicate that long-range interactions play a significant role in spatial dis-
ease dynamics. In the models to be discussed below, we will introduce a class
of spatially extended models in which the impact and interplay of both spa-
tial heterogeneity and long-range spatial interactions can be investigated in
a systematic fashion. It will also become clear that another key issue in spatial
disease dynamics is the translation of topological features of transportation
networks, that is the flux matrix W into dynamical entities which generate the
dispersal in space. At first glance, this may seem a straightforward process.
However, as we will see, this is a nontrivial task, and the behavior of a spa-
tially extended epidemic model depends sensitively on the precise choice of
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method of translating the topology of a transportation network into dynam-
ics. To understand this, we first review some of the paradigmatic models for
disease dynamics in a single population.

1.4.1
Disease Dynamics in a Single Population

One of the simplest models for an epidemic in a single population is the SIR
model [21]. In this model a population of N individuals is classified accord-
ing to infectious state, that is a person can be susceptible (S) to the disease,
infected (I) by the disease, and recovered (R) from the disease. Recovered in-
dividuals are assumed to have aquired immunity to the disease and can no
longer be infected. Each individual in a population may undergo the transi-
tion

S → I → R (1.16)

during the time course of an infection. The dynamics of an epidemic is gov-
erned by only two reactions:

S + I α−→ 2I (1.17)

I
β−→ R , (1.18)

a contact-initiated disease transmission and the recovery from disease, re-
spectively. Models of this type are known as compartmental models, because
a population is divided into different compartments defining the state and in-
dividuals of various compartments which interact by a set of reactions. A key
assumption in the SIR model and, in fact, most single population compart-
mental models is the mixing assumption. It means that: (1) all individuals of
a given class are identical in their behavior; (2) independent of one another;
and (3) reactions between a given pair of individuals occurs with the same
likelihood as a reaction of any other pair.

The structure of compartmental models is very similar in nature to chemical
reactions, in fact one usually employs the mass-action principle to derive or-
dinary differential equations for the dynamics of the number of susceptibles,
infected and recovereds. At any point t in time the probability that an infected
individual recovers in [t, t + Δt] is assumed to be constant and proportional to
Δt. The change in infecteds and recovereds is thus

ΔI = −ΔR ≈ −βΔt . (1.19)

The probability that an infected succesfully transmits the disease to a suscep-
tible in Δt is given by

P = Δt × σ × T × S
N

, (1.20)
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where σ is the contact rate between individuals, T the transmission proba-
bility and S/N the probability that the contact made by the infected is with
a susceptible individual. This yields

−ΔS = ΔI ≈ α
S I
N

Δt (1.21)

where α = σT is the force of infection, that is the effective transmission rate.
For the SIR model this yield the following system of nonlinear ordinary dif-
ferential equations (ODEs):

∂tS = −α
S I
N

∂t I = α
S I
N

− βI

∂tR = βI . (1.22)

We can define fractions s = S/N, j = I/N and r = R/N and noting that
S(t) + I(t) + R(t) = N (i.e. the population size is conserved) we obtain the
SIR model in its canonical form [22]:

∂ts = −αsj

∂t j = αsj − βj (1.23)

r = 1 − s − j .

The key parameter in the SIR model is the basic reproduction number

R0 =
α

β
=

Trecovery

Tcontacts

the ratio of the force of infection and recovery rate. It is the average num-
ber of secondary infections caused by one infected individual in the time
that individual is infected, on average. When R0 > 1, a population with
an initially small fraction of infecteds will be subject to an epidemic: a fast
exponential increase and a subsequent decay of j(t), see Figure 1.7. When
R0 < 1 no epidemic occurs. The basic reproduction number is thus a threshold
parameter.

1.4.1.1 The SIS Model

In the SIS model the second reaction scheme (1.18) is replaced by I → S, in-
fected individuals do not aquire immunity but rather recover from the disease
to become susceptible again. This model lacks the R class and is governed by
only one ODE for the infecteds

∂t j = αj(1 − j) − βj (1.24)
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Figure 1.7 Time evolution of the SIR model as defined by (1.23).
Parameters are β = 1 and R0 = 4.5. The time course of the frac-
tion of infecteds, susceptibles and recovereds are shown in red,
blue and green, respectively. The initial condition was j(0) = 0.01,
s(0) = 1 − j(0) and r(0) = 0.

where the conservation of individuals s = 1 − j is assumed. For R0 = α/β > 1
the SIS model evolves to a stable stationary state given by

js = 1 − 1
R0

,

in which a fraction js of the population is infected, the disease is endemic. The
SIS model is a useful system for investigating the impact of space on disease
dynamics and we will discuss the spatially extended SIS model in the next
section.

1.5
Spatial Models

In the heart of all spatial models is the motivation to forsake the assumption of
homogenous mixing of individuals and incorporate the fact that individuals
belonging to different populations exhibit different interaction probabilities
and that they are mobile in space. The conceptual tool underlying the devel-
opment of spatial models is that of a metapopulation. A metapopulation is
a set m = 1, . . . , M of populations of size Nn. The total number of individuals
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of the metapopulation is

N =
M

∑
n=1

Nn . (1.25)

It is usually assumed that the dynamics in each population is governed by
dynamics that adhere to homogeneous mixing but interaction of individuals
between populations are governed by additional laws. The most important of
these interactions for disease dynamics is the random exchange of individu-
als between populations. The most straightforward generalization of the SIS
model, including metapopulations, is given by:

Sn + In
α−→ 2In

In
β−→ Sn

Sn
wmn−−→ Sm

In
wmn−−→ Im (1.26)

In addition to the first two reactions, that is ordinary SIS dynamics in each
population n, susceptibles and infecteds can randomly move between pop-
ulation m and n, the rate of which is governed by the probability rate wmn.
The assumption in this model is that individuals of all types randomly travel
between populations in the same fashion. The set of ODEs governing disease
dynamics is then given by a set of 2M coupled ODEs:

∂tSn = −α
SnIn

Nn
+ βIn + ∑

m �=n
[wnmSm − wmnSn]

∂t In = α
Sn In

Nn
− βIn + ∑

m �=n
[wnm Im − wmnIn] . (1.27)

The total rate of leaving a node n is given by ∑m �=n wmn and the expected time
an individual remains in a population n is

〈Tn〉 =
1

∑m �=n wmn
. (1.28)

Note, that in the metapopulation system, the number Nn(t) = Sn(t) + In(t)
of individuals in each subpopulation is generally time-dependent, in fact,
adding the ODEs pairwise we obtain

∂tNn = ∑
m �=n

[wnmNm − wmnNn] . (1.29)

In most models it is usually assumed that the system is equilibrated with re-
spect to dispersal, that is Nn does not change over time and is therefore equal
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to the fixed point of (1.29), that is

Nn(t) = Ns
n = Cn = const. (1.30)

In the following we will refer to the stationary population size of node n as
the capacity Cn. In equilibrium the flux of individuals from n to m balances
that of m to n (detailed balance condition):

wnmCm = wmnCn . (1.31)

In this case the spatial SIS model (1.27) reduces to a set of M coupled ODEs
for the fraction of infecteds in each population:

∂t jn = αjn(1 − jn) − βjn + ∑
m �=n

[wnmjm − wmnjn] (1.32)

with jn = In/Cn . The system defined by (1.32) is an example of an infec-
tious disease dynamical system extended to the metapopulation level. A large
class of contemporary models for spatial disease dynamics are related to it in
structure [6, 9, 23, 24]. One of the key difficulties in theoretical epidemiology
are: (1) the identification of effective communities of populations that make
up a metapopulation; and (2) the quantitative assessment of traveling rates
wnm between these populations. Note that the introduction of populations n
making up the metapopulation did not specify spatial locations. In the dy-
namical system (1.32), the relation between communities is solely defined by
the dynamical coupling ωnm. In most models, however, all communities are
typically embedded in space such that each population n has a well defined
geographical location �xn. One can then use the geographical information to
make and test assumptions as to how the exchange rates wnm depend on ge-
ography. One of the most popular assumptions in this context is that the flux
of individuals between two communities depends on their size and their dis-
tance. The total flux of individuals in equilibrium from community m to n and
vice versa is given by the left- and the right-hand side of the detailed balance
condition (1.31), respectively. In the majority of models it is assumed that the
flux Fnm increases with the capacities (i.e. the stationary size of the popula-
tions) Cm and Cn and decreases monotonically with the geographical distance
between them, that is

Fnm = ω0(CmCn)ξ G(|�xn − �xm|) = Fmn (1.33)

with 0 ≤ ξ ≤ 1. The function G takes care of the dependence on distance.
Depending on the type of metapopulation and dynamical context, this kernel
can be exponential, gaussian or show algebraic deay with x. Using the relation
Fnm = wnmCm between absolute flux and probability rates in equilibrium,
(1.33) implies for the hopping rate

wnm = w0Cξ
n × G(|�xn − �xm|) × Cξ−1

m . (1.34)
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Inserted into the rate equation (1.29) one can check that Cn is the equilibrium
community size. In epidemiological contexts, spatial communities often re-
flect cities, towns and villages. The specific choice of G(x) put forth by (1.8) or
human mobility which is frequently used is the power-law decay

G(x) ∼ x−1−μ (1.35)

when this is inserted into (1.33) and (1.34) it gives

ωnm = ω0
Cξ

n × Cξ−1
m

|�xn − �xm|D+μ
(1.36)

where D = 2 is the spatial dimension. The parameter ξ quantifies the impact
of origin and destination in the travelling event m → n.

• When ξ = 1 we have

wnm ∝ Cn and Fnm ∝ CnCm (1.37)

This implies that the rate is independent of properties of the origin and the
flux is proportional to the size of both communities.

• When ξ = 0 we have

wnm ∝
1

Cm
and Fnm ∝ 1 (1.38)

that is the rate of traveling to destination n is independent of properties
of the destination and the flux is independent of community sizes of both
places.

• An interesting system is the symmetric case when ξ = 1/2. This implies
that

wnm ∝
√

Cn/Cm and Fnm ∝
√

CnCm . (1.39)

In this situation, the rate wnm is independent of scaling the entire metapop-
ulation size uniformly by some factor and the flux is the geometric mean of
the community sizes of origin and destination. That implies, for example,
that if we scale the entire population size by Cn → 2Cn this also scales the
flux by a factor of two.

1.5.1
Continuity Limit and Fractional Transport

With the definition of the rate according to (1.36) the dispersal of individuals
is given by

∂tNn = w0 ∑
m �=m

[
Cξ

nCξ−1
m

|�xn −�xm|1+μ
Nm − Cξ

mCξ−1
n

|�xm − �xn|1+μ
Nn

]
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with 0 < μ. A useful insight into the properties of this master equation can
be gained by performing a continuity limit. Letting �xn be points on a grid
of microscopic areas ΔA and Nn(t) = n(�xn, t)ΔA, Cn = c(�xn)ΔA, the above
equation becomes

∂tn(�x, t) = w0 lim
ΔA→0

∫
�y/∈ΔA

d�y
cξ(�x)cξ−1(�y)n(�y, t)− cξ(�y)cξ−1(�x)n(�x, t)

|�x −�y|2+μ
(1.40)

The integral is over all points outside of an area centered at �x. One has to be
careful when carrying out this limit, because of the divergent denominator. In
fact, the rate m → n was originally only defined for interacting communities
n �= m and it is meaningless for n = m. One can, however, carry out the limit
ΔA → 0 and interpret the integral as a Cauchy integral. The limit of the rhs
of (1.40) then depends sensitively on the value of the exponent μ. For μ > 2
one obtains [25, 26]

∂tn = D0

[
cξΔcξ−1n − cξ−1nΔnξ

]
, (1.41)

with n = n(�x, t) and c = c(�x) and Δ = ∂2
x . This implies that when the exponent

μ exceeds the critical value μc = 2 the process becomes a diffusion process in
the limit above. However, this diffusion process evolves in a heterogeneous
environment determined by the function c(�x).

If μ < 2 as, for example, observed in the dispersal of bank notes (in that case
μ ≈ 0.6) the limit yields

∂tn = D0[cξΔμ/2cξ−1n − cξ−1nΔμ/2nξ ] (1.42)

where the operator Δμ/2 is known as the fractional Laplacian, a non local sin-
gular operator defined by

(Δμ/2 f )(�x) = Cμ

∫
d�y

f (�y) − f (�x)
|�x −�y|D+μ

(1.43)

where Cμ is a constant and D is the spatial dimension [27, 28]. The reason
why Δμ/2 is refered to as a fractional derivative is that in Fourier space it
exhibits a particularly simple form, a multiplication by −|�k|μ. Equations of
the type (1.42) are known as fractional diffusion equations and have been
employed in a number of physical, biological and chemical systems [29–32].
Ranging from anomalous diffusion of protein motion on folded polymers to
human eye movements [27, 28, 33]. The derivation above relates dispersal of
individuals in metapopulations for the first time to fractional diffusion equa-
tions, an approach that may well prove to be valuable in the future.
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1.5.2
Limiting Cases

Before re-inserting the dispersal component into the original spatial SIS
model, it is worthwhile considering known marginal cases of the general
fractional diffusion equation (1.42). For example, when μ = 2 and c(�x) = 1,
the dynamics equation reduces to

∂tn = D0Δn , (1.44)

that is ordinary diffusion in a homogeneous environment. When μ = 2 but
c(�x) is a variable function of position, that is (1.42) is the same as (1.41), the
dispersal is governed by a Fokker–Planck equation

∂tn = −∇F n + 1
2 ΔD n (1.45)

which is equivalent to (1.41) and force and the diffusion coefficients F = F(�x)
and D = D(�x), respectively, are related to the heterogeneity function c(�x).
This relation depends, of course, on the value of the parameter ξ. For example,
when the system is origin-driven, that is when ξ = 0, then (1.41) reduces to

∂tn = D0Δn/c , (1.46)

a Fokker–Planck equation with a space-dependent diffusion coefficient

D(�x) =
D0

c(�x)
, (1.47)

which is inversely proportional to the stationary population density c(�x). This
means that, in this system, diffusion is high in regions where the population
is small and vice versa. In the destination-driven system ξ = 1, we obtain
a Fokker–Planck equation with

D(�x) = 2D0c(�x) and F(�x) = 2D0∇c(�x) . (1.48)

in which diffusion increases with population density but, more importantly,
a nonzero drift towards regions with higher population density is introduced.
When μ = 1/2, that is the impact of the origin and destination are the same,
the diffusion coefficient is contant and the force term is given by

F(�x) = D0∇ log c(�x) . (1.49)

One can see that it is only in this situation that the dynamics does not change
when the population density c(�x) is scaled uniformly by a factor. In this case
− log c(�x) can be considered a potential V(�x) of the system, with minima in
densely populated areas and maxima in weakly populated ones.
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The most interesting case, and certainly the one closest to reality, is the gen-
eral case when the dynamical system is fractionally diffusive and spatially
heterogeneous. The combination of the rhs of (1.42) with the spatial SIS model
of (1.32) gives the spatially extended fractional SIS model.

∂t j = αj(1 − j) − βj + D0cξ−1[Δμ/2cξ j − jΔμ/2cξ ] . (1.50)

The spatial SIR model or related systems that differ in the local dynamics can
be derived analogously; for instance, the spatial SIR model is given by

∂ts = −αjs + D0cξ−1[Δμ/2cξs − sΔμ/2cξ ] , (1.51)

∂t j = αjs − βj + D0cξ−1[Δμ/2cξ j − jΔμ/2cξ ] .

The key question is: What are the general properties of the solutions to these
reaction-fractional diffusion equations? How do the solutions depend on the
parameters 0 ≤ ξ ≤ 1 and 0 < μ ≤ 2? And what are approximate choices for
these parameters for real epidemics?

To address the first question: solutions of three variants of the spatial SIR
model are depicted in Figure 1.8. One system is spatially homogeneous and
dispersal is by ordinary diffusion. The solution exhibits traveling wavefronts
that propagate at constant speeds, a fact known for similar systems such as the
Fisher equation. In fact, a spatially homogeneous SIR variant was employed
to estimate the speed of propagation of the black death in Europe in the 14th
century. The second simulation is a system with some degree of spatial het-
erogeneity, that is c(�x) is variable but μ = 2. As in the spatial homogeneous
system, solutions to the spatial SIR model still exhibit traveling well-defined
wavefronts that exhibit some irregularity imposed by the spatial heterogene-
ity. However, the key feature of a wave-front propagating with a constant
speed remains unchanged.

If, however, one introduces nonlocal dispersal by choosing a value μ < 2,
the overall statistical features of the spreading pattern change drastically. In-
stead of a well-shaped wavefront, the pattern exhibits localized islands in the
time course of the epidemic. This behavior is a direct consequence of the in-
terplay of the spatial heterogeneity and the nonlocal superdiffusive nature of
dispersal incorporated in the fractional SIR model (1.51).

The last questions can be answered by a comparison with the empirical re-
sults presented above. The fact that the flux of dollar bills into nodes is pro-
portional to the population size suggests that human dispersal is destination
driven; see, for example (1.37), and that ξ = 1. The power law in the short-
time dispersal probability for the distance, that is p(r) in (1.8) implies that
μ ≈ 0.6. With these parameters, and the equilibrium distribution of individ-
uals in a large geographical area, we can investigate the spreading pattern in
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Figure 1.8 Snapshots of a two-dimensional
spatial extended SIR model. (a) A spatially
homogeneous system with c(�x) = const.
and ordinary diffusion in space. This sys-
tem exhibits a propagating front at constant
speed. (b) The same as above but with spa-
tial heterogeneity. The heterogeneity induces

randomness in the shape of the wavefront but
introduces no qualitatively different patterns.
(c) The fractional SIR model with heteroge-
neity. The combination of scale-free diffusion
and heterogeneity introduces a novel type of
spatiotemporal pattern with fractal properties.

a real geographical context. Results are shown in Figure 1.9 for a fractional
SIS model with parameters μ = μh ≈ 0.6 in the United States for an initial
outbreak in Washington, DC. For c(�x) we chose the population density of
the counties in the United States. In comparison to a system with only local
dispersal, the fractional SIS systems shows a pattern similar in structure to
the idealized system of a square grid (i.e. Figure 1.8). For instance, well be-
fore the bulk of the epidemic reaches the midwest, the disease has already
almost reached its maximum on urban areas on the West Coast. Dispite its
structural simplicity and the crude assumptions made on the course of de-
riving the fractional SIS model, these spreading patterns are strikingly sim-
ilar to recently published large-scale, agent-based simulation studies on the
most likely spread of new human influenza H5N1 subtype in the United
States.
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Figure 1.9 Simulation of the fractional, spa-
tially extended SIS model (b) in the United
States compared to a system with ordinary
diffusion (a). Each column represents a snap-
shop of the time evolution of both systems.
The initial outbreak in the simulations was in

Washington DC and parameters of the dis-
persal were ξ = 1 (destination driven) and
μ = 0.6 (superdiffusion, (b)) and μ = 2
(ordinary diffusion, (a)). The patterns exhibit
the qualitative behavior of the idealized sys-
tem shown in Figure 1.8.

Although these results are promising, from a theoretical point of view little
is known about the general properties of fractional and heterogeneous reac-
tion diffusion equations such as (1.50) and (1.51). This is primarily due to the
fact that these equations are difficult to solve numerically and the analytical
tools for investigation are currently underdeveloped. The richness of the pos-
sible applications of this approach, not only in spatial epidemiology, leads us
to believe that in the near future novel and interesting properties of fractional
diffusion systems in heterogeneous environments will be discovered and will
find their intentification in natural systems.

References

1 Xia, Y.C., Bjørnstad, O.N. and Grenfell, B.T.
(2004) Measles metapopulation dynam-
ics: A gravity model for epidemiological
coupling and dynamics. Am. Nat., 164(2),
267–281.

2 Ferguson, N.M., Cummings, D.A.T.,
Cauchemez, S., Fraser, C., Riley, S.,
Meeyai, A., Iamsirithaworn, S. and
Burke, D.S. (2005) Strategies for contain-
ing an emerging influenza pandemic in
southeast Asia. Nature, 437(7056), 209–214.

3 Ferguson, N.M., Cummings, D.A.T.,
Fraser, C., Cajka, J.C., Cooley, P.C. and
Burke, D.S. (2006) Strategies for mitigating
an influenza pandemic. Nature, 442(7101),
448–452.

4 Dall’Asta, L., Barrat, A., Barthelemy, M.
and Vespignani, A. (2006) Vulnerability of
weighted networks. J. Stat. Mech. Theory E,
P04006

5 Colizza, V., Pastor-Satorras, R. and Vespig-
nani, A. (2007) Reaction-diffusion processes



24 1 Human Mobility and Spatial Disease Dynamics

and metapopulation models in heteroge-
neous networks. Nat. Phys., 3(4), 276–282.

6 Colizza, V., Barrat, A., Barthelemy, M. and
Vespignani, A. (2006) The role of the airline
transportation network in the prediction
and predictability of global epidemics.
P. Natl. Acad. Sci. USA, 103(7), 2015–2020.

7 Barrat, A., Barthelemy, M. and Vespig-
nani, A. (2005) The effects of spatial con-
straints on the evolution of weighted
complex networks. J. Stat. Mech. Theory E,
P05003.

8 Noble, J.V. (1974) Geographic and tem-
poral development of plagues. Nature,
250(5469), 726–728.

9 Grenfell, B.T., Bjørnstad, O.N. and
Kappey, J. (2001) Travelling waves and
spatial hierarchies in measles epidemics.
Nature, 414(6865), 716–723.

10 Grenfell, B.T., Bjørnstad, O.N. and Finken-
städt, B.F. (2002) Dynamics of measles
epidemics: Scaling noise, determinism,
and predictability with the TSIR model.
Ecol. Monogr., 72(2), 185–202.

11 Gonzalez, M.C., Hidalgo, C.A. and
Barabasi, A.-L. (2008) Understanding in-
dividual human mobility patterns. Nature,
453(7196), 779–782.

12 Guimera, R. and Amaral, L.A.N. (2004)
Modeling the world-wide airport network.
Eur. Phys. J. B, 38(2), 381–385.

13 Hufnagel, L., Brockmann, D. and Geisel, T.
(2004) Forecast and control of epidemics in
a globalized world. P. Natl. Acad. Sci. USA,
101(42), 15124–15129.

14 Brockmann, D., Hufnagel, L. and Geisel, T.
(2006) The scaling laws of human travel.
Nature, 439(7075), 462–465.

15 Gardiner, C.W. (1985) Handbook of Stochastic
Methods, Springer Verlag, Berlin.

16 Metzler, R. and Klafter, J. (2000) The ran-
dom walks guide to anomalous diffusion:
A fractional dynamics approach. Phys. Rep.,
339:1–77.

17 Shlesinger, M.F., Zaslavsky, G.M. and
Frisch, U. (eds) (1995) Lévy Flights and
Related Topics in Physics, Lecture Notes
in Physics, Springer Verlag, Berlin.

18 Viswanathan, G.M., Afanasyev, V.,
Buldyrev, S.V., Murphy, E.J., Prince, P.A.
and Stanley, H.E. (1996) Lévy flight search
patterns of wandering albatrosses. Nature,
381:413–415.

19 Heinrich, B. (1979) Resource heterogene-
ity and patterns of movement in foraging
bumblebees. Oecologia, 40:235–245.

20 Ramos-Fernandéz, G., et al. (2004) Lévy
walk patterns in the foraging movements
of spider monkeys (Ateles geoffroyi). Be-
havioral Ecology and Sociobiology, 55(3):223–
230.

21 Anderson, R.M. and May, R.M. (1979)
Population Biology of Infectious Diseases.
Nature, 280(5721), 361–367.

22 Kermack, W.O. and McKendrick, A.G.
(1932) Contributions to the mathematical
theory of epidemics II – the problem of en-
demicity. P. R. Soc. Lond. A-Conta, 138(834),
55–83.

23 Colizza, V. and Vespignani, A. (2008)
Epidemic modeling in metapopulation
systems with heterogeneous coupling pat-
tern: Theory and simulations. J Theor Biol,
251(3), 450–467.

24 Hufnagel, L., Brockmann, D. and Geisel, T.
(2004) Forecast and control of epidemics
in a globalized world. PNAS, 101:15124–
15129.

25 Belik, V.V. and Brockmann, D. (2007)
Accelerating random walks by disorder.
New J. Phys., 9:54.

26 Brockmann, D. and Sokolov, I.M. (2002)
Lévy flights in external force fields:
From models to equations. Chem. Phys.,
284:409–421.

27 Brockmann, D. and Geisel. T (2003) Parti-
cle dispersion on rapidly folding random
hetero-polymers. Phys. Rev. Lett., 91:048303.

28 Brockmann, D. and Geisel, T. (2003) Lévy
flights in inhomogeneous media. Phys. Rev.
Lett., 90(17), 170601.

29 Barkai, E., Metzler, R. and Klafter, J. (2000)
From continuous time random walks to the
fractional Fokker–Planck equation. Phys.
Rev. E, 61(1), 132–138.

30 Barkai, E. (2001) Fractional Fokker–Planck
equation, solution, and application. Phys.
Rev. E, 63:46118.

31 Saichev, A.I. and Zaslavsky, G.M. (1997)
Fractional kinetic equations: solutions and
applications. Chaos, 7(4), 753–764.

32 Metzler, R. and Klafter, J. (2000) Bound-
ary value problems for fractional diffusion
equations. Physica A, 278, 107–125.

33 Brockmann, D. and Geisel, T. (2000) The
ecology of gaze shifts. Neurocomputing,
32–33, 643–650.


