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We investigate front propagation in a reacting particle system in which particles perform scale-free
random walks known as Lévy flights. The system is described by a fractional generalization of a reaction-
diffusion equation. We focus on the effects of fluctuations caused by a finite number of particles per
volume. We show that, in spite of superdiffusive particle dispersion and contrary to mean-field theoretical
predictions, wave fronts propagate at constant velocities, even for very large particle numbers. We show
that the asymptotic velocity scales with the particle number and obtain the scaling exponent.
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One of the fundamental processes involved in nonequi-
librium pattern formation is the spatial propagation of
interfaces or fronts. Front propagation usually emerges
when a local reaction dynamics interplays with diffusion
in space of the reacting agents and has been observed in a
wide range of physical, chemical, and biological systems
[1-6]. One of the most prominent models which displays
propagating fronts is the Fisher-Kolmogorov-Petrovsky-
Piscounov (FKPP) equation for the spatial concentration
u(x, r) of a reacting agent,

d,u = yu(l — u) + DAu. (1)

In epidemiological contexts the field u(x, t) may quantify
the concentration of infected individuals relative to the
endemic value [7]. In Eq. (1) diffusive motion of the
reacting agents is assumed and quantified by the diffusion
coefficient D in units of m?/s. However, this assumption
cannot be justified for a number of systems. In fact, super-
diffusive dispersion in space has been observed in a wide
range of biological and population dynamical systems [8—
11].

One of the most successful theoretical concepts devised
for the understanding of superdiffusion is a class of random
walks known as Lévy flights [12]. A Lévy flight consists of
random single steps Ax which are drawn from an inverse
power-law probability density function (PDF) p(Ax) ~
|Ax|~(+~) characterized by a Lévy exponent 0 < u < 2.
Because of the heavy tail, the variance in step size is
divergent, the process lacks a spatial scale, and the position
X(r) of a Lévy flight scales heuristically with time ¢ as
X(r) ~ 1'/#. The associated diffusion equations contain
fractional generalizations of ordinary derivatives [13,14].
These fractional Fokker-Planck equations can exhibit be-
haviors strikingly different from ordinary ones [15] and
have found wide application in physics, e.g., protein mo-
tion on folded heteropolymers [16] and the dynamics of
modern epidemics [17].

In two recent studies wave front dynamics was shown to
be drastically different from ordinary reaction-diffusion
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dynamics when the reacting agents move superdiffusively
[18,19]. The authors considered fractional generalizations
of Eq. (1) and showed that the spatiotemporal shape u(x, 1)
of the leading edge of a propagating front has a power-law
tail along the spatial coordinate and accelerates exponen-
tially in time as opposed to the constant velocity and
exponential decay in space exhibited by ordinarily diffu-
sive systems. The predictions made by mean-field theory
thus indicate that scale-free, superdiffusive dispersion of
the reacting agents excludes constant velocity wave fronts
and induces an entirely different spatiotemporal behavior.

However, as has been shown in a number of recent
studies, the effect of fluctuations can be rather profound
in these systems [20]. A finite albeit large number N of
particles or reacting agents leads to significant corrections
to the mean-field approximation even for very large values
of N. Brunet and Derrida [21,22] extended mean-field
dynamics by an effective cutoff parameter & for the con-
centration of particles below which no reaction and hence
no exponential growth of the leading edge of a front is
possible. Despite the fact that a rigorous equivalence with
multiplicative noise is still lacking, the effective cutoff
approach is very intuitive and in remarkable agreement
with simulations of the full probabilistic dynamics.

Here, we focus on the effect of fluctuations on reaction-
superdiffusion kinetics. We show that for arbitrarily small
fluctuations (i.e., arbitrarily large particle numbers N),
wave fronts propagate asymptotically at constant veloc-
ities. Furthermore, we show that as soon as fluctuations
enter the description the algebraic tail along the spatial
coordinate of the leading edge disappears and is replaced
by an exponential decay. Thus, despite the fact that react-
ing agents move superdiffusively in space, the wave front
patterns are qualitatively the same as in the ordinary dif-
fusion case. We show that a front speed v is selected after a
transient time and that v scales with particle number as
v ~ NV~ for Lévy exponents u < 2. The results reported
here are rather counterintuitive, deviate strongly from the
predictions cast by mean-field theory, and indicate that
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fluctuations affect reactions-superdiffusion systems se-
verely and must not be neglected.

We begin with a simple two particle type (A, B) reaction
scheme,

1

A, + B, 224 A, + B, 32B )

X X

flx=yD)

A, B, ="A, B, 3)

Vv
Particles of type A and B either react to produce two
particles of type A or two particles of type B at rate k
and k,, respectively. The units of rates k;/, and f are m?/s
and s~ !, respectively, where d is the Euclidean dimension.
Furthermore, particles of both types may jump from posi-
tion x to position y with a probability density rate f(|x —
y]) which we assume to be a decreasing function of dis-
tance |x — y|. The dynamic stochastic variables are the
particle numbers n,4(x, r) and ng(x, r) of particles in a
volume of size ) (in units m?) around x of type A and
B, respectively. The volume () is assumed to be large
enough to contain a large number of particles but small
compared to the spatial extend of the system. The total
number of particles in () around x is given by N(x, t) =
nalx, 1) + ng(x, 1).

In the limit of an infinite particle number per unit
volume, fluctuations can be neglected and one obtains
d,u = yu(l — u) for the relative abundance of A particle
u=ny/Q where y = k; — k, (in units m?/s). In a spa-
tially extended system with dispersal governed by Eq. (3)
we have u = u(x, 1) and the mean-field dynamics is aug-
mented by a dispersal operator L, i.e., 9,u = yu(l — u) +
Lu. When particles perform ordinary random walks the
operator L can be approximated by the ordinary Laplacian
A. However, this description is no longer valid if f(x) ~
|x|~0+#) with 0 < u < 2. In this case individual jumps
lack a scale, particles perform Lévy flights, and L is
proportional to a nonlocal singular integral operator,

[u(y, 1) — ulx, 1)]

[x — y[t*~

AR 2y(x, 1) = C, [dy , 4)

where C,, is a dimensionless constant [23]. In Fourier
space the operator A#/2 is equivalent to a multiplication
by —|k|#, generalizing the well-known —k? factor corre-
sponding to the ordinary Laplacian which is why A#/2 is
frequently referred to as a fractional Laplacian. In this case
one obtains

du = yu(l —u) + D,A*?y, %)

which is the Fisher equation (1) for w = 2 and its super-
diffusive mean-field generalization for u < 2. The gener-
alized diffusion coefficient D, has units m* /s. For u = 2
Eq. (5) is solved by exponential fronts traveling at a
constant speed v [24], i.e., u(x, t) ~ uyexp[—A(x — v1)],
whereas when p < 2 fronts possess an algebraic tail along

the spatial coordinate and are accelerating exponentially
fast [18,19].

For large but finite N one may account for fluctuations
by expanding a master equation associated with Eq. (2) for
the local dynamics in terms of short time moments and
obtain a Fokker-Planck equation [25]. This introduces a
multiplicative noise term to Eq. (5), i.e., the system is
governed by the Ito-stochastic partial differential equation

du = yu(l — w)dt + D, A*2udr + -2
yu( ) u 7N

X \Ju(l — u)dW (1), (6)

where 0> = k; + k, and W(¢) = W(x, 1) is a spatially un-
correlated family of Wiener processes. Note that the noise
amplitude decreases with particle number as N ~'/2 and the
mean-field description is recovered in the thermodynamic
limit. In the following we address the question of how and
in what magnitude these fluctuations impact the front
propagation of the system.

Figure 1 illustrates the results obtained for the full
stochastic model as defined by Egs. (2) and (3), parameter
values are provided in the figure caption. Figure 1(a) de-
picts the time evolution of the front velocity defined by the
total mass (z) of particles of type A, where the total mass is
given by the number of type A particles. After an initial
nonlinear growth of I(¢) the front speed is asymptotically
constant, in contrast to the behavior of the mean-field
dynamics which exhibits exponential growth [18,19].
Note that this behavior is not a consequence of an effective
cutoff in the power law of the dispersal due to a finite
number of particles per site. In fact, the inset depicts the
time evolution of the distance from its origin travelled by
one reacting particle which scales with time according to
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FIG. 1. Asymptotic front velocity in the full stochastic model.
(a) The solid line depicts the total mass I(z) of type A particles as
a function of time. The system size is L = 104, the total number
of A and B particles in the system is 200 X 10*. Other parame-
ters are v = 1 and u = 1.8. A constant front velocity (constant
dI(r)/dr) is attained asymptotically (dashed line). (b) Average
shape of the wave front of type A particles in the linear regime
[t =20 in (a)] calculated from over 4000 realizations. The
horizontal dashed line separates the exponential (dashed line)
from the algebraic (dotted line) region. Note the log scale on the
ordinate; below the dashed line the number of A particles is of
the order of unity. The inset shows the distance from the starting
point |X(z)| of a Lévy flight with u = 1.8. The dashed line
indicates the scaling |X(¢)| ~ r'/#.
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|X,| ~ #'/#_ This scaling only depends on the Lévy expo-
nent p and for w <1 every particle travels superlinearly
and thus ““faster” than the wave front. The finite speed of
the wave front is a consequence of the fact that even though
particles of type A may jump far into the unstable region
(where ny = 0) the probability of absorption in that region
is high enough to outweigh the local exponential growth of
the number of A particles in that region unlike the mean-
field dynamics which exhibits local exponential growth for
arbitrarily small concentrations of type A particles.

Figure 1(b) depicts the shape of the moving front. In the
moving coordinate frame z = x — vt the expectation value
of the number of A particles {n,(z)) is shown on a semi-
logarithmic scale. Unlike the mean-field dynamics which
exhibits an algebraic tail, the wave front decreases expo-
nentially in the range where reaction kinetics play a role,
i.e., 1 <mny < N. For values of z for which the concentra-
tion of A particles is too low and only dispersal plays a role
it decreases algebraically.

The transition between exponential and algebraic decay
in the shape of the asymptotic wave front indicates that
effectively the dynamics near the tip of the wave front is
governed by a threshold above which the reaction plays a
dominant role and below which it does not.

In order to investigate this threshold mechanism we
analyzed the dynamics within an approach originally in-
troduced in Ref. [21] in which an effective cutoff ¢ ~ 1/N
is introduced directly by means of a step function in the
nonlinear growth term of mean-field dynamics, i.e.,

du=yu(l —u)O(u —¢g) + DMA/’“/Zu, @)

in which @ is the Heaviside function. For mathematically
rigorous treatments of these type of fractional reaction-
diffusion equations, see Ref. [26]. Qualitatively, this ac-
counts for the fact that no growth on average can occur if
the particle concentration u is less than a fixed small
number of particles per unit volume. This approach has
been applied successfully in the ordinary diffusion sce-
nario [21]. In Eq. (7), mean-field theory implies € = 0.
Figure 2 summarizes the front dynamics obtained from
numerical integration of (7) for a concentration u(x, r)
initially peaked at the origin and which vanishes exponen-
tially for small and large arguments. For various particle
numbers N the velocity and shape of the front were com-
puted. Figure 2(a) shows that even for very large particle
numbers wave fronts move asymptotically at constant
speeds, a remarkable difference from the mean-field limit
(dashed line in the inset) which predicts exponentially
accelerating front. Furthermore, the asymptotic speed is
larger for larger particle number N per site. Figure 2(b) de-
picts snapshots of the wave fronts on a double-logarithmic
scale. After a transient phase, the shape of the front ap-
proaches a steady state with a sharply decreasing bound-
ary at intermediate values for the concentration and an
algebraic tail for large x with concentrations u(x, ) below
the cutoff . The inset in 2(b) depicts the approach to the
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FIG. 2. Propagation of wave fronts in superdiffusive systems
with effective cutoff. (a) Location of the wave front x*(¢) as a
function of time ¢ for different particle numbers N (solid lines)
for w = 1.5 and y = 0.1 in Eq. (7). Following initial transients
the velocity v = dx*()/dt is constant (dashed lines) and in-
creases with N. The inset depicts a magnification of the initial
phase. The wave front accelerates exponentially but deviates
from the mean-field dynamics (e = 0, dashed line) after the
transient period. (b) Shape of the wave front at exponentially
increasing time steps t = 1.5” with m =5,6,...,20 for N =
10*. After a transient phase the shape remains unaltered, decays
sharply forl /N < u(x, ) < 1, and follows a power law u(x, 1) ~
x~(+#) for large x. The dashed line indicates the effective cutoff
& = 107*. The spatial extent in the numerical integration was
L =2%3~838X10. Inset: Scaling behavior of the fronts’ pro-
files in the reference frame of the front. Arrows indicate the
temporal direction. The curves approach a steady state charac-
terized by an exponential decay in space, exp— Ax. The position
of the front x*(¢) is given implicitly by u(x*(z), 1) = 0.05.

asymptotic front shape in the comoving frame. Therefore,
the dynamical system (7) is in qualitative agreement with
the dynamics of the full stochastic model.

In summary, the characteristic spatiotemporal wave
front solution of Eq. (5) for large times is given by u(x, 1) ~
Aexp[—Alx —vr)], for 1/N<u<1 followed by a
power-law tail u(x, 1) ~ B(x — v)~*#) for u <1/N in
which A and B are constants in units m~! and m™#,
respectively. The decay parameter A (units m~!) and the
velocity v depend on the particle number N. Qualitatively,
this dependence can be determined in the moving reference
frame under the assumption that u(x,7) = u(x — vt) =
u(z). Figure 2(b) suggests that u(z) = u;(z) = Aexp—Az
forz <z*and e <u < 1 and u(z) = u,(z) = B/z' ** for
7> 7" (u<e¢e) where z* marks the crossover between
exponential and algebraic decay. Heuristically a relation
between the speed v of the wave front, the threshold &, and
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FIG. 3. Asymptotic front velocity v(N) of the effective cutoff
model as a function of the particle number N for different Lévy
exponents pu = 1.2, 1.5, and 1.8 (circles, diamonds, and tri-
angles, respectively). The dashed line indicates the scaling
v(N) ~ N'/#_ The inset shows the calculated asymptotic front
velocity of the full stochastic model for u = 1.8.
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