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Lévy Flights in Inhomogeneous Media
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We investigate the impact of external periodic potentials on superdiffusive random walks known as
Lévy flights and show that even strongly superdiffusive transport is substantially affected by the
external field. Unlike ordinary random walks, Lévy flights are surprisingly sensitive to the shape of the
potential while their asymptotic behavior ceases to depend on the Lévy index . Our analysis is based
on a novel generalization of the Fokker-Planck equation suitable for systems in thermal equilibrium.
Thus, the results presented are applicable to the large class of situations in which superdiffusion is
caused by topological complexity, such as diffusion on folded polymers and scale-free networks.
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Diffusion processes are ubiquitous in nature. A freely
diffusive particle is characterized by a mean square dis-
placement which increases linearly in time, (X?(r)) « t.
However, a variety of interesting physical systems violate
this temporal behavior. For example, the position X(z) of a
superdiffusive particle heuristically evolves as X(r) ~
'/# with 0 < u < 2. Superdiffusion has been observed
in a number of systems ranging from early discoveries in
intermittent chaotic systems [1], fluid particles in fully
developed turbulence [2], to millennial climate changes
[3], bacterial motion [4], and human eye movements [5].

Among the most successful theoretical concepts which
have been applied to superdiffusive phenomena are ran-
dom walks known as Lévy flights [6,7]. In contrast to
ordinary random walks, the displacements Ax of a Lévy
flight lack a well-defined variance, due to a heavy tail in
the single step probability density. Lévy flights have
paved the way towards a description of superdiffusive
phenomena in terms of fractional Fokker-Planck equa-
tions (FFPE) [8].

Since many of the aforementioned systems evolve in
inhomogeneous environments, it is crucial to understand
the influence of external potentials on the dynamics.
While in ordinary diffusive systems an external force is
easily incorporated into the dynamics by a drift term in
the corresponding Fokker-Planck equation (FPE) [9], the
matter is more subtle in superdiffusive systems due to the
nonlocal properties of the fractional operators involved.
Depending on the underlying physical model, different
types of FFPEs are appropriate [10], therefore the ad hoc
introduction of fractional operators may lead to severe
problems.

In cases where the external inhomogeneity can be
represented by an additive force, considerable progress
has been made in a generalized Langevin approach
[11,12] which led to an FFPE in which deterministic
and stochastic motion segregate into independent compo-
nents. This approach, however, is suited only for systems
in which such a segregation can be justified on physical
grounds. Furthermore, it is valid only for systems far
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from thermodynamic equilibrium and fails in the large
class of systems which obey Gibbs-Boltzmann thermody-
namics, e.g., where superdiffusion is caused by the com-
plex topology on which the process evolves, such as
diffusion on folded polymers [13].

In this Letter, we investigate the impact of external
potentials on this class of systems. Based on the paradig-
matic case of a randomly hopping particle on a folded
copolymer, we report a number of bizarre phenomena
which emerge when Lévy flights evolve in periodic po-
tentials and show that external potentials have a profound
effect on the superdiffusive transport. This is in sharp
contrast to generalized Langevin dynamics, which dis-
plays trivial asymptotic behavior, a possible reason why
Lévy flights in periodic potentials have attracted little
attention in the past. We demonstrate that even strongly
superdiffusive Lévy flights are highly susceptible to peri-
odic potentials. At low temperatures, they exhibit a sig-
nificant dependence on the overall shape of the potential.
The asymptotic behavior does not depend on the Lévy
flight index u, yet differs for various types of potentials
(except in the ordinary diffusion limit). A perturbation
analysis reveals a universal behavior for high tempera-
tures. Finally, we show that in finite systems the effect
of the potential on the generalized diffusion coefficient
is least pronounced for intermediate values of w. This
is consistent with the observation that Lévy flights with
p = 1 are particularly efficient in search processes [5,14].
The results we present are a first step towards an under-
standing of superdiffusive dynamics on topologically
complex structures exposed to external inhomogeneities.

Let us begin with the dynamics of a particle perform-
ing an unbiased random walk in a homogeneous environ-
ment in continuous time. The probability p(x, t) of finding
the particle at a position x, given that it was initially at the
origin, is governed by the master equation [9]

0,p(x, 1) = f dy[w(xly) po, 1) — wolo) ple 0] (1)

in which w(x|y) is the probability rate of initiating a jump
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y — x. If this probability has a typical variance in dis-
tance, one may expand the right-hand side (rhs) of Eq. (1)
in moments of w(x|y) yielding the FPE for a freely
diffusive particle, d, p = A p. However, when the rate
asymptotically follows an inverse power law of distance,
ie., wixly) ~ |x — y|~*#) with u <2, the variance of
jump lengths diverges and the particle performs a super-
diffusive walk known as a Lévy flight [6]. Inserting this
rate into (1), the rhs defines the integral operator AW/ 2,

_ [p(y, ) — p(x, )]
A#/zp(_x, l) = ]dy |x_y|1+’u ’ (2)

and Eq. (1) may be rewritten as
a,p = DA*?p, (3)

The parameter D is the generalized diffusion coefficient.
Up to a constant factor, the operator A#/2 is frequently
referred to as the fractional Laplacian, because it repre-
sents a multiplication by —|k|* in Fourier space [8].
Equation (3) is solved by p(x, t) = (D1)'/# L,[x/(Dt) V],
where L, (z) = 27)~" [dkexp(ikz — |k|#) is the sym-
metric Lévy stable law of index w. The argument x/r'/#
in L, reflects the superdiffusive behavior of the process.
When g = 2 ordinary diffusion is recovered. In ordinary
diffusion, a potential V is canonically introduced by a
drift term BVV’p in the FPE. Thus, it may seem reason-
able to formally allow for an external potential in a
superdiffusive system by

a,p = BVV'p+ Ar/2p, 4)

This FFPE has been studied extensively in the past
[11,12]. It describes deterministic motion in a gradient
field F = — BV’ subjected to Lévy stable white noise 7(z),
ie, X = — BV’ + n(r). However, this approach introdu-
ces severe restrictions. Systems evolving according to (4)
do not obey Gibbs-Boltzmann thermodynamics. The
stationary state p,, if it exists, is generally not p, x
exp(—BV) and depends on the tail parameter u.
Detailed balance is violated, and only in the diffusion
limit (& = 2) can the parameter 8 be interpreted as an
intensive inverse temperature. The asymptotics of Eq. (4)
in periodic potentials is trivial. Rescaling the original
coordinates z = x/7y, 7 = t/y* with y > 1 yields a form
invariant FFPE in a new potential V(z) = y*~2V(yz).
The factor y*~2 implies that on large scales any bounded
potential is insignificant to the dynamics, a possible
explanation why Lévy flights in periodic potentials have
attracted little attention in the past.

However, the generalized Langevin description is not
appropriate for a variety of superdiffusive phenomena
[10], as a segregation into deterministic and stochastic
forces cannot be justified by the underlying physics.
Consider the system depicted in Fig. 1. A particle is
loosely attached to a polymer chain. Thermal activation
causes the particle to jump between monomers. The het-
erogeneity of the polymer is accounted for by the poten-
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tial V(x) defined on chemical axis x. It is reasonable to
assume that the rate w(x * alx) of making a transition
between neighboring sites x and x = a decreases with
increasing potential at the target site and that it depends
on the potential difference 6V. = V(x = a) — V(x) in
units of kzT = B~'. Both assumptions are accounted
for by w(x = alx) < exp[—B86V./2]. If the polymer is
in solution and subjected to fast conformational changes,
regions of the chain that are distant along the chemical
axis x of the polymer may come close in Euclidean space.
Long distance transitions x — y may occur with a proba-
bility which follows an inverse power law of chemical
distance |x — y|~0*#) when |x — y| > a. The exponent
M is determined by the folding properties of the polymer,
e.g., a Gaussian chain implies u = 1/2 [15]. The possi-
bility of distant jumps along the chemical coordinate
enhances the diffusion process considerably, and is be-
lieved to play a role in protein dynamics on DNA strands
[16]. A jump process of this type can be modeled by a
master equation (1), in which thermodynamic as well as
geometric aspects need to be incorporated in the rate
w(x|y). The above reasoning suggests

W(x|y) o g—B[V()c)—V(y)]/Z/ljC _ yl“ﬂ. 5)

In Ref. [17], a mean field theoretic treatment of the
dynamics of the polymer chain also yields Egq. (5).
Inserting the above rate into Eq. (1), we obtain

a,p = e—ﬁV/ZA#ﬂeﬁV/Zp — peﬁV/2A,u/2€—ﬁV/2’ (6)

which is clearly different from the FFPE corresponding
to generalized Langevin dynamics. Equation (6) obeys
Gibbs-Boltzmann thermodynamics, p, « exp(—BV) is
the stationary solution, detailed balance is fulfilled, and
B is a well-defined intensive inverse temperature for all
m € (0, 2]. Rescaling coordinates as above yields a po-
tential V(z) = V(yz) lacking the prefactor y2~# which is
present in the generalized Langevin scheme. Therefore,
the effect of a bounded potential will have an effect on all
scales. Note that, for u = 2, Eq. (6) reduces to the ordi-
nary FPE. When V = 0, the rhs is identical to A#/2p.
Letting ¢ = exp[—BV /2] p, Eq. (6) can be recast into a
fractional Schrodinger equation,

ap = —Hy, (7)

FIG. 1. A particle jumps randomly along a folded copolymer
which consists of two types of periodically arranged mono-
mers. Each monomer type has a different potential sketched
qualitatively in the top left. Because of conformational changes
of the chain, the particle can jump to a site close in Euclidean
space yet distant in chemical coordinate x.
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H = —-Ar2 + 7, U = ePV2AR2e=BYI2 (8)
with an anomalous kinetic term —A*/2 and an effective
potential U which depends on w. A separation ansatz
yields the associated stationary equation,

[E + A#2 — Ulg(x) = 0, 9)
for the spectrum E. Let us consider periodic potentials of
wavelength 27A, V(x) = V(x + 27An), with n € Z.
Without loss of generality, we restrict ourselves to poten-
tials with vanishing offset and unit variance. A Bloch
ansatz ,(x) = €¥*0(x) with 6(x) = 0(x + 27An) and
g € [0, 1/A] inserted into (7) in Fourier space yields

(En,q - Eg,q - UO)én - Z Un—mém =0. (10)

m¥#n

In Eg. (10), E,, are the eigenvalue bands labeled
by the discrete band index n and the continuous Bloch
phase g. The spectrum of the system for vanishing
potential is given by EY, =|n/A—g|*. The Fourier
coefficients of the periodic component of the eigen-
function and the effective potential are given by
6, = 1/2mwA [, , dx0(x) exp ( — inx/A) and U, =
1/27A [, dx U(x)exp(—inx/A), respectively. The
spectrum E, , depends implicitly on 8. In the high tem-
perature limit, the eigenvalue bands merge to form a
continuous spectrum. For nonvanishing 8 gaps between
bands emerge. The band structure determines the relaxa-
tion properties of the system. For a comparison of differ-
ent Lévy indices w, it is more appropriate to compare the
generalized crystal momentum defined as «,, , = E,/q“

Figure 2 depicts the 8 dependence of the first few bands
Kk, q for different potentials, each one reflecting a fre-
quently encountered physical situation. In each panel
ordinary diffusion is compared to enhanced diffusion
with Lévy index u = 1/2. The band structure of ordi-
nary diffusion (u = 2) in the cosine potential displays
only one significant gap [18] contrasting the superdiffu-
sive case in which the narrowing effect of individual
bands is substantial [Fig. 2(A)]. The effect is even more
pronounced in the square wave potential [Fig. 2(B)]. Band
coupling leads to far more complex band structures when
p = 1/2. The most striking difference occurs in the
localized barrier (well) potentials, Figs. 2(C) and 2(D).
In the example of copolymers discussed above, these
cases describe situations in which the polymer consists
mainly of a single type of monomer interspersed with
small intervals of another type of monomer at a higher or
lower potential, respectively. On one hand, the band
structures are identical when p = 2, indicating that an
ordinary diffusion process does not distinguish between
barriers and wells. On the other hand, if u = 1/2, the
band structures differ considerably; the shape of the
potential has a profound impact on the band structure
and thus on the dynamics of the system.
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FIG. 2. Band structure «, , as a function of 8 for four differ-
ent potentials. (A) A simple cosine potential V « cos(x/A), (B)
the square wave potential, and potentials given by V o *[1 +
cos(x/A)]”. When y > 1, the latter possess localized high
potential barriers (C) or localized potential wells (D).
A Lévy flight (u = 1/2) is compared to ordinary diffusion
(u =2).

The asymptotic behavior is governed by the lowest
band of the spectrum, n =0, and ¢ < A~!. For 8 =0,
the system is freely superdiffusive. This yields Eg, g = aq".
When g is finite the g* dependence remains, i.e., Ey, =
D(B) g*. The generalized diffusion coefficient D(B) is
reduced to a value less than unity; the process is slowed
down by the potential. The high temperature regime can
be investigated by expanding the effective potential U in
(9) in powers of B. Neglecting all terms of order higher
than O(B%), we obtain

Un = /\1|iﬁ |n|'uV - ﬁ Zvn m(lnl# - 2|n1|'u')‘/mi|
(11)

Inserted into (10) yields in perturbation theory Eg, =~
q*[1 — B>G,(q)]. As expected, D(B) decreases quadrati-
cally with increasing B, ie., D(B) = 1 — B*G,(q). The
factor G,(g) is positive and depends on V and w. It
quantiﬁes the effect on the asymptotics, the larger
G, (q) the stronger the slowing down effect of the poten-
tial. We obtain

Gulg) = Z V.28 (gA/m), (12)
m>0

where

()=L< 1 N 1
Eull M (I—Z)M—ZM (1+Z)M_M

Noting that 3, |V,,|*> =

- 2). (13)

1, the asymptotic limit is

1 m=2

/4 0<u<2 (19

limG,(q) = |

The asymptotics are the same for any type of potential. In

170601-3



VOLUME 90, NUMBER 17

PHYSICAL REVIEW LETTERS

week ending
2 MAY 2003

gu(MLY

O>OXD
=rE

£ E
TR
L

)

0% 10% 102 4,
10° 10" 10° aL

oo =
ou o

*
SELLLE
Soonoo
c3383a38

L=
L=
L=
L=
L=
L=

002 004 006 008 j»/

FIG. 3. The quantity g, (A/L) in the high temperature regime
as a function of Lévy index u and fixed system size (left). The
solid lines (symbols) depict the results obtained from pertur-
bation theory (numerics). Thick gray lines indicate the asymp-
totic limit of 1/4 (1) if u <2 (u = 2). Viewed as a function of
inverse relative system size A/L for a set of values of u (right)
indicates that convergence to the limiting values is slowest
when w is small or slightly less than 2.

addition, the rhs of (14) is independent of wx with a
discontinuity to a higher value on the margin pu = 2.

The limit g — O represents a system of infinite extent.
In a finite system of size 27L, the Bloch phase acquires
discrete values ¢ = n/L with n € N. The relaxation time
is defined by the inverse of the lowest eigenvalue, ob-
tained by (12) at g = L~' << A~!. The result is shown in
Fig. 3 for the cosine potential. In this case, Eq. (12)
implies G, (1/L) = g,(A/L). On the left, g, is depicted
as a function of w for a number of system sizes.
Surprisingly, the asymptotic limit is not attained uni-
formly on the w interval (0,2]. Even for very large
systems g, exhibits a minimum at u = 1, as u — 0O the
factor g, diverges. Although small values of w imply
heavy tails in the transition probability, the potential
strongly influences the dynamics in that range. We con-
clude that Lévy flights with intermediate values of w are
most robust when perturbed by an external field. This may
explain why Lévy flights with u = 1 are the most effi-
cient when employed in random search [14].

Finally, we investigate the effective generalized diffu-
sion coefficient D(B) in the low temperature regime.
Since perturbation theory fails here, we must rely on
the numerical diagonalization of (10). The result is de-
picted in Fig. 4. D(B) is identical for all superdiffusive
processes in a given potential. However, a comparison
between potentials reveals a unique response of Lévy
flights to each potential shown in the inset. The effect
on D(B) is least pronounced in the potential barrier
system, intermediate for the cosine, and strongest in the
potential well. In contrast, ordinary diffusion shows a
decrease in D(B) which is not only greater compared to
all the other cases, but is independent of the shape of the
potential. For small B, the results are consistent with
those obtained from perturbation theory.

D. B. thanks I. M. Sokolov and W. Noyes for interesting
comments and discussion.
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FIG. 4. The generalized diffusion coefficient D(B) as a func-
tion of inverse temperature for a chosen set of Lévy indices
(indicated by the symbols in the lower left) and the set of
potentials depicted in the upper right. The data were obtained
by numerical diagonalization of (10). The dotted (u < 2) and
dashed (u = 2) curves indicate the result obtained by the
perturbation expansion for small (.
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