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Abstract

Territorial subdivisions and geographic borders are essential for understanding phenomena in sociology, political science,
history, and economics. They influence the interregional flow of information and cross-border trade and affect the diffusion
of innovation and technology. However, it is unclear if existing administrative subdivisions that typically evolved decades
ago still reflect the most plausible organizational structure of today. The complexity of modern human communication, the
ease of long-distance movement, and increased interaction across political borders complicate the operational definition
and assessment of geographic borders that optimally reflect the multi-scale nature of today’s human connectivity patterns.
What border structures emerge directly from the interplay of scales in human interactions is an open question. Based on a
massive proxy dataset, we analyze a multi-scale human mobility network and compute effective geographic borders
inherent to human mobility patterns in the United States. We propose two computational techniques for extracting these
borders and for quantifying their strength. We find that effective borders only partially overlap with existing administrative
borders, and show that some of the strongest mobility borders exist in unexpected regions. We show that the observed
structures cannot be generated by gravity models for human traffic. Finally, we introduce the concept of link significance
that clarifies the observed structure of effective borders. Our approach represents a novel type of quantitative, comparative
analysis framework for spatially embedded multi-scale interaction networks in general and may yield important insight into
a multitude of spatiotemporal phenomena generated by human activity.
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Introduction

The geographic compartmentalization of maps into coherent

territorial units is not only essential for the management and

distribution of administrative responsibilities and the allocation of

public resources. Territorial subdivisions also serve as an

important frame of reference for understanding a variety of

phenomena related to human activity. Existing borders frequently

correlate with cultural and linguistic boundaries or topographical

features [1,2], they represent essential factors in trade and

technology transfer [3,4], and they indirectly shape the evolution

of human-mediated dynamic processes such as the spread of

emergent infectious diseases [5–8].

The majority of existing administrative and political borders, for

example in the United States and Europe, evolved over centuries

and typically stabilized many decades ago, during a time when

human interactions and mobility were predominantly local and

the conceptual separation of spatially extended human populations

into a hierarchy of geographically coherent subdivision was

meaningful and plausible.

However, modern human communication and mobility has

undergone massive structural changes in the past few decades

[1,9]. Efficient communication networks, large-scale and wide-

spread social networks, and more affordable long-distance travel

generated highly complex connectivity patterns among individuals

in large-scale human populations [10,11]. Although geographic

proximity still dominates human activities, increasing interactions

over long distances [12–14] and across cultural and political

borders amplify the small-world effect [15,16] and decrease the

relative importance of local interactions.

Multi-Scale Human Mobility
Human mobility networks epitomize the complexity of multi-

scale connectivity in human populations (see Fig. 1a). More than

17 million passengers travel each week across long distances on the

United States air transportation network alone. However,

including all means of transportation, 80% of all traffic occurs

across distances less than 50 km [12,17]. The coexistence of

dominant short-range and significant long-range interactions

handicaps efforts to define and assess the location and structure

of effective borders that are implicitly encoded in human activities

across distance. The paradigm of spatially coherent communities

may no longer be plausible, and it is unclear what structures

emerge from the interplay of interactions and activities across

spatial scales [12,13,17,18]. This difficulty is schematically

illustrated in Fig. 1b. Depending on the ratio of local versus

long-range traffic, one of two structurally different divisions of

subpopulations is plausible. If short-range traffic outweighs long-

range traffic, local, spatially coherent subdivisions are meaningful.

Conversely, if long-range traffic dominates, subdividing into a
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single, spatially de-coherent urban community and disconnected

suburban modules is appropriate and effective geographic borders

are difficult to define in this case.

Although previous studies identified community structures in

long-range mobility networks based on topological connectivity

[19,20], this example illustrates that the traffic intensity resulting

Figure 1. Human mobility network derived from bank note fluxes. (a) Multi-scale human mobility is characterized by dominant short range
and significant long-range connectivity patterns. The illustrated network represents a proxy for human mobility, the flux of bank notes between 3,109
counties in the lower 48 United States. Each link wijw0 is represented by a line, the color scale encodes the strength of a connection from small (dark
red) to large (bright yellow) values of wij spanning four orders of magnitude. (b) A simplified illustration of generic traffic patterns between and within
metropolitan mobility hubs (A and B), with two types of connections wL and wD, local traffic connecting individual hubs to smaller nodes in their
local environment (blue) and long distance links connecting the hubs (red). Depending on the ratio of local and long range flux magnitude, two
qualitatively different modularizations are plausible. If wL&wD, two spatially compact communities are meaningful (left), whereas if wL%wD, the
metropolitan centers belong to one yet geographically delocalized module (orange), effectively detached from their local environment, yielding three
communities altogether (right). (c) Multi-scale mobility networks are strongly heterogeneous as reflected by the functions p(d), p(w), and p(f ), the
relative frequencies of distances dij , link weights wij and vertex flux fi~

P
j wij that all are distributed over several orders of magnitude.

doi:10.1371/journal.pone.0015422.g001
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from the interplay of mobility on all spatial scales must be taken into

account. Obtaining comprehensive, complete, and precise datasets

on human mobility covering many spatial scales is a difficult task,

and recent studies have followed a promising alternative strategy

based on the analysis of proxies that permit the indirect

measurement of human mobility patterns [9,12–14,21,22].

Results and Discussion

A Proxy for Human Mobility
Here we construct a proxy network for human mobility from

the geographic circulation of banknotes in the United States.

Movement data was collected using the online bill-tracking game

wheresgeorge.com. Individuals participating in this game can

mark individual bills and return them to circulation; other

individuals who randomly receive bills can report this find online

along with their current location (zip code). A comprehensive

account of the circulation of currency, the wheresgeorge.com

dataset, and an analysis of the statistics of travel distances and

inter-report times for various denominations are provided in Text

S1. Our analysis is based on the intuitive notion that the coupling

strength between two locations i and j increases with wH
ij , the

number of individuals that travel between a pair of locations per

unit time, and furthermore that the flux of individuals in turn is

proportional to the flux of bank notes, denoted by wij . Evidence

for the validity of this assumption has been obtained previously

[12,13,17] and we provide further evidence in Text S1. Based on a

set of trajectories of 11,759,420 bills we thus compute wij§0
between the 3,109 counties in the lower 48 United States

(excluding Alaska and Hawaii). The resulting proxy network for

human mobility is thus encoded by the matrix W whose elements

are wij . W represents a symmetric, weighted, spatially-embedded

network. The network is multi-scale, ranging from the typical

linear extent of a county (approximately 50 km) to the linear size

of the US (approximately 4,000 km), and strongly heterogeneous,

reflected in the broad distribution of the weights, degrees, and the

fluxes per node (cf. Fig. 1c, video clip at http://rocs.northwestern.

edu/clips/?assets/Follow_the_Money_SD.mp4).

Effective Geographic Subdivisions and Borders
Based on the idea that two counties i and j are effectively proximal if

wij is large, we use network-theoretic techniques [23] to identify a

partition P of the nodes into k modules Mn such that the intra-

connectivity of the modules in the partition is high and inter-

connectivity between them is low as compared to a random null model.

A standard measure of the amount of community structure captured

by a given partition P is the modularity Q(P) defined as [24,25]

Q~
X

n

DFn ð1Þ

in which DFn~Fn{F0
n is the difference between Fn, the fraction of

total mobility within the module Mn, and the expected fraction F0
n of a

random network with an identical weight distribution p(w). Q cannot

exceed unity; high values indicate that a partition successfully groups

nodes into modules, whereas random partitions yield Q&0.

Maximizing Q in large networks is an NP-hard problem [26], but a

variety of algorithms have been developed to systematically explore

and sample the space of possible divisions in order to identify high-

modularity partitions [23,27].

Modularity Maximization. We employ a stochastic Monte-

Carlo method (see Text S1, video clip at http://rocs.northwestern.

edu/clips/?assets/Follow_the_Money_SD.mp4) to approximate a

maximal-modularity subdivision of the multi-scale mobility

network depicted in Fig. 1a. Since the optimization process is

stochastic, the resulting partition varies between realizations of the

process. Three representative examples of high-modularity

partitions are displayed in Fig. 2a. Note that, although

modularity only takes into account the structure of the weight

matrix W and is explicitly blind to the geographic locations of

nodes, the effective large-scale modules are spatially compact in

every map. Consequently, although long-distance mobility plays

an important role, the massive traffic along short distances

generates spatial coherence of community patches of mean

linear extension l~633+250 km. Note however that although

each maps exhibits qualitative similarities between detected large

scale subdivisions and although each of the maps possess a high

modularity score, obvious structural differences exist. It is thus

questionable whether one individual effective maps can be

considered the single most plausible partition. Recent work has

moreover identified a resolution limit intrinsic to the modularity

measure that renders modularity-maximization algorithms

incapable of detecting modules below a critical size [28].

Assessment of Border Structures. Therefore, instead of

focusing on a single high-modularity map, we consider an entire

ensemble of partitions that can be exploited to recover the

underlying community structure and alleviate the aforementioned

resolution limit (see Text S1). We compute an ensemble of 1,000

partitions, all exhibiting a high modularity (Q~0:6744+0:0026)

and spatially compact modules, and perform a linear superposition

of the set of maps. This method extracts features that are structural

properties of the entire ensemble. The most prominent emergent

feature is a complex network of spatially continuous geographic

borders (Fig. 2d). These borders are statistically significant

topological features of the underlying multi-scale mobility

network. An important aspect of this method is the ability to not

only identify the location of these borders but also to quantify the

frequency with which individual borders appear in the set of

partitions, a measure for the strength of a border (see video clip at

http://rocs.northwestern.edu/clips/?assets/Follow_the_Money_

SD.mp4).

Investigating this system of effective mobility borders more

closely, we see that although they correlate significantly with

territorial state borders (pv0:001, see Text S1) they frequently

occur in unexpected locations. For example, they effectively split

some states into independent patches, as with Pennsylvania, where

the strongest border of the map separates the state into regions

centered around Pittsburgh and Philadelphia. Other examples are

Missouri, which is split into two halves, the eastern part dominated

by St. Louis (also taking a piece of Illinois) and the western by

Kansas City, and the southern part of Georgia, which is effectively

allocated to Florida. Also of note are the Appalachian mountains.

Representing a real topographical barrier to most means of

transportation, this mountain range only partially coincides with

state borders, but the effective mobility border is clearly correlated

with it. Finally, note that effective patches are often centered

around large metropolitan areas that represent hubs in the

transportation network, for instance Atlanta, Minneapolis and Salt

Lake City. We find that 44% of the administrative state borders

are also effective boundaries, while 64% of all effective boundaries

do not coincide with state borders (cf. pie charts in Fig. 2d).

Understanding Effective Borders
A key question is what components of the network are

responsible for the features observed in the system of effective

borders. In order to test the degree to which short-range

connections dominate the structure of effective borders we

generate an artificial network that lacks short-range connections

The Structure of Borders in a Small World
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(Fig. 3a). Applying the same computational technique to locate

and quantify effective spatial subdivisions, we find that removing

short-distance traffic has profound consequences for the spatial

structure and coherence of divisions. We consistently find three

independent modules that latitudinally split the US. As these three

modules remain largely spatially coherent, we conclude that

intermediate traffic inherits the role of short range mobility in

generating spatial coherence. Although the removal of short links

represents a substantial modification of the network, bootstrapping

the original network randomly by the same amount (see Text S1)

has little impact on the border structure depicted in Fig. 2d. We

conclude that short- to intermediate-distance mobility is a key

factor in shaping effective borders.

Comparison to Gravity Models. We also investigate

whether the observed pattern of borders can be accounted for

by the prominent class of gravity models [29–31], frequently

encountered in modeling spatial disease dynamics [31]. In these

phenomenological models it is assumed that the interaction

strength wij between a collection of sub-populations with

geographic positions xi, sizes Ni, and distances dij~Dxi{xj D is

given by

wij!
Na

i N
b
j

dij
1zm

ð2Þ

Figure 2. Effective subdivisions and borders in the United States. (a) Subdivisions determined by maximizing modularity Q share similar
values of Q (top to bottom: Q~0:6807, 0:6808, and 0:6804, all in k~14 modules). In all maps the modules are spatially compact. Although these
solutions share features, they exhibit significant differences in the module structure. (b) Ensemble statistics of geographic subdivisions for a set of
N~1,000 partitions. The number of modules k in each subdivision is narrowly distributed around 13 (grey bars), and so are the conditional
distributions of modularity (superimposed whisker plots). The ensemble mean is Q~0:674+0:0026. (c) Distribution of the linear extensions of the 48
states (mean 329+125 km) and the geographic modules in the effective subdivision (644+215 km). (d) Effective borders emerge from linear
superposition of all maps in the ensemble (blue lines). Intensity encodes border significance (i.e. the fraction of maps that exhibit the border). Black
lines indicate state borders. Although 44% of state borders coincide with effective borders (left pie chart), approximately 64% of effective borders do
not coincide with state borders. These borders are statistically significant features of the ensemble of high modularity maps, they partially correlate
with administrative borders, topographical features, and frequently split states. (e) Close-up on the Missouri region, showing the effective border
between Kansas City and St. Louis that divides the state. (f) Close-up on the Appalachian Mountains with corresponding border, which extends north
to split Pennsylvania. This border is the strongest in the map.
doi:10.1371/journal.pone.0015422.g002
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in which the exponents a,b,m§0 are parameters. Although their

validity is still a matter of debate, gravity models are commonly

used if no direct data on mobility is available. The key feature of a

gravity model is that wij is entirely determined by the spatial

distribution of sub-populations. We therefore test whether the

observed patterns of borders (Fig. 2d) are indeed determined by

the existing multi-scale mobility network or rather indirectly by the

underlying spatial distribution of the population in combination

with gravity law coupling. Figure 3f illustrates the borders we find

in a network that obeys equation (2). We generate this network

such that the first order statistical similarity to the original

networks is maximized, which sets the parameters a,b and m (see

Text S1). Comparing this model network to the original multi-

scale network we see that their qualitative properties are similar,

with strong short range connections as well as prominent long

range links. However, maximal modularity maps typically contain

only five subdivisions with a mean modularity of only �QQ~0:4791.

Because borders determined for the model system are strongly

fluctuating (maps in Fig. 3e), they yield much less coherent large

scale patches. However, some specific borders, e.g. the

Appalachian rim, are correctly reproduced in the model.

Because the model system produces significantly different

patterns (see Text S1 for statistics), we conclude that the sharp

definition of borders in the original multi-scale mobility network

and the pronounced spatial coherence of the building blocks are

an intrinsic feature of the real multi-scale mobility network and

can not be generated by a gravity model that has a maximum first

order statistical overlap with the original mobility network.

Effective Borders and Shortest Path Trees. The proposed

method successfully extracts the structure of geographic borders

inherent in multi-scale mobility networks. Bootstrapping the

network indicates that these structures are surprisingly stable in

response to perturbations of the network, but neither the

modularity measure nor the stochastic algorithm we use to

discover partitions provide specific information about the

substructures in the network that make these borders so robust.

What feature of the network, more specifically which subset of

links if any, generates the observed borders? In order to address

this question and further investigate the structural stability of

the observed patterns, we developed a new and efficient

computational technique based on the concept of shortest-path

trees (SPT) [32]. Like stochastic modularity maximization, this

technique identifies a structure of borders that encompass spatially

coherent regions (Fig. 4c), but unlike modularity this structure is

unique. More importantly, it identifies a unique set of connections

in the network, a network backbone, that correlates strongly with

the observed borders. The shortest-path tree Ti rooted at node i is

the union of all shortest paths originating at i and ending at other

nodes. The shortest path between two nodes is the path that

minimizes the effective distance d~
P

1=wij along the legs of the

path. Based on the set of SPTs Ti we compute an effective distance

between nodes i and j by computing the shortest path tree

dissimilarity (SPTD), i.e.

dij~z(Ti,Tj) ð3Þ

Details of the function z that quantifies differences of trees are

provided in Text S1. If Ti~Tj we have z(Ti,Tj)~0, whereas

z(Ti,Tj)~N for completely different trees. In our data the z values

range from 2 to 240. We compute a series of borders induced by

Figure 3. Comparative analysis of effective borders in two artificial systems: a modified mobility network deprived of short distance traffic
(a–c), and a gravity model for human mobility (d–f). (a) A subnetwork of the original system (Fig. 1a) in which all links with geographic length
dv400 km are removed (the inset depicts the complementary, removed subnetwork). (b) Two generic partitions of this long-range network,
consisting of only three modules that do not exhibit sharply defined geographical borders. (c) The resulting border structure (red lines) exhibits no
significant overlap with the borders obtained from the original multi-scale system. Borders of the original system and overlap are depicted in blue
and green, respectively. (d) A gravity model network as defined by Eq. (2). Parameters a~b~0:96 and m~0:3 have been chosen to maximize first-
order statistical similarity to the original data. (e) Although qualitatively the network in (d) shares features with the original network (Fig. 1a), generic
partitions of the gravity model network are structurally different, typically exhibiting fewer modules per partition, in different locations and with less
spatial compactness. (f) The border structure of the gravity network (red) partially coincides with the borders in the original data (blue), but not
significantly. The overlap is shown in green, for significance tests see Text S1. (g) First order statistics of the two artificial networks in comparison to
the original network. The functions p(d), p(w), and p(f ) for the long-range network in (a) (green), the gravity model network in (d) (red), and the
original mobility network (Fig. 1a, blue). The dotted line indicates d~400 km.
doi:10.1371/journal.pone.0015422.g003
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tree dissimilarity by applying a standard hierarchical clustering

algorithm [33] to the complete dissimilarity matrix dij . We

consider a border more important if it appears earlier in the

hierarchy. Unlike conventional clustering of the inverse weight

matrix which requires adding some noise and produces a

hierarchical structure that does not strongly correlate with the

input, the set of borders computed by our method is an accurate

representation of the underlying data (see Text S1). In fact,

although the method yields a unique sequence of topological

segmentations, the observed geographic borders exhibit a strong

correlation with those determined by modularity maximization

(Fig. 4a).

The key advantage of this method is that it can systematically

extract properties of the network that match the observed borders.

A way to demonstrate this is to measure the frequency s at which

individual links appear in the ensemble of all SPTs, which is

conceptually related to their link betweenness [25]. Computing

this link significance s for each connection, we find that the

distribution P(s) of the network is bimodally peaked (Fig. 4b). This

is a promising feature of P(s) as it allows labeling links as either

significant or redundant without introducing an arbitrary

threshold which is necessary for more continuously distributed

link centrality measures. Extracting the group of significant links

and constructing a subnetwork from these links only we observe

that this subnetwork matches the computed border structure

(Fig. 4c). By virtue of the fact that the most frequently shared links

between SPTs are local, short-range connections we see that the

SPT boundaries enclose local neighborhoods and that the

boundaries fall along lines where SPTs do not share common

features. Note that effective metropolitan areas around cities can

be detected with greater precision than modularity, although the

western US is detected as effectively a single community.

Finally, we performed statistical analyses that quantify the

overlap of the effective, mobility-induced borders with those

provided by census-related systems. We choose the set of borders

separating the states, the borders defined by the districts of the 12

Federal Reserve Banks, and the borders of Economic Areas [34].

Details of this correlation analysis are provided in Text S1. We

find a significant correlation with economic boundaries (pv0:001,

z-score 8:024 for the modularity borders and pv0:001, z-score

13:29 for the SPT borders).

We conclude that considerable geographic information is not

only effectively encoded in human mobility networks, it can also

be identified systematically using the techniques presented here.

The identification and quantification of geographic borders and a

comprehensive assessment of their significance will be very

important for understanding dynamic processes driven by human

mobility. An important area in which the observed borders

potentially facilitate our understanding is the geographic patterns

of isoglosses in North American English dialects [35]. Partial

evidence exists that isoglosses correlate with mobility patterns. The

results presented here may serve as a starting point for a better

understanding of language borders not only in North American

English but generally in the context of spatial linguistics.

Although applied here to a network that spans a continent, the

proposed concepts are quite general and can be applied on a finer

geographical scale. This could lead to new methods for urban

design and for planning public transportation systems. The ideas

need not be limited to human behavior: tracking of various

animals is now widespread, and a dataset of sufficient size, in

combination with these techniques, could help understand animal

foraging and habitat segmentation. The framework presented here

is suitable for a wide range of multi-scale interaction networks for

which the underlying effective borders are presently unknown. We

Figure 4. The relation of effective borders and the significant links of the multi-scale mobility network. (a) Comparing borders from
modularity maximization (blue) with SPT clustering (red) reveals a significant overlap (green). The cumulative topological overlap (see Text S1) is
0:5282 indicating that the SPTD method represents an alternative computational approach to border extraction. (b) The distribution of link
significance s, defined for each link as the number of shortest-path trees the link appears in, exhibits a strong bimodal distribution. This implies that
SPTD can sort links into important or not, and that s is approximately a binary variable. (c) By comparing the border structure from SPT clustering
with the ensemble of significant links (those that appear in at least half of the shortest-path trees, i.e. in the right half of the histogram in b) we
identify topological structures which reveal the core of the network that explains the majority of border locations. This core is represented by the
network in blue consisting of star-shaped modules centered around large cities (yellow squares).
doi:10.1371/journal.pone.0015422.g004
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believe that our discovery of effective mobility borders in the US is

a first step and that these techniques will open the door to

promising, quantitative, comparative investigations of many

spatially distributed behavioral patterns.

Supporting Information

Text S1
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