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Neuronal growth cones, the sensory-motile structures at the tips of de-
veloping axons, navigate to their targets over distances that can be many
times greater than their diameter. They may accomplish this impressive
task by following spatial gradients of axon guidance molecules in their
environment (Bonhoeffer & Gierer, 1984; Tessier-Lavigne & Placzek, 1991;
Baier & Bonhoeffer, 1994). We calculate the optimal shape of a gradient
and the distance over which it can be detected by a growth cone for two
competing mechanistic models of axon guidance. The results are surpris-
ingly simple: Regardless of the mechanism, the maximum distance is
about 1 cm, Since gradients and growth cones have coevolved, we sug-
gest that the shape of the gradient in situ will predict the mechanism of
gradient detection. In addition, we show that the experimentally deter-
mined dissociation constants for receptor-ligand complexes implicated
in axon guidance are about optimal with respect to maximizing guid-
ance distance. The relevance of these results to the retinotectal system is
discussed.

1 Introduction

The mechanisms that guide axons to appropriate targets in the developing
brain are largely unknown. A popular notion, first suggested by Cajal, is
that spatial gradients of axon guidance molecules are detected by the growth
cone and provide directional information. Experimental evidence for the ex-
istence of such mechanisms is gradually mounting. However, so far there
has been little consideration of the theoretical limits on axon guidance by
gradients imposed by physical limits on the detection of a concentration
difference across a small sensing device. Here, using a few pieces of exper-
imental data and some simple approximations, we address these limits.
For a growth cone to be guided by a gradient, it must be able to sense
a sufficiently large difference in ligand concentration over its length. The
ligand may be attractive or repellent, and may be substrate bound, freely
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diffusing, or a combination of both. Two possible mechanisms for gradient
detection by a growth cone are (1) internal amplification of a small per-
centage change in external concentration across the width w of the growth
cone (Bonhoeffer & Gierer, 1984; Gierer, 1987), and (2) a shifting internal
baseline that reduces the effective concentration at one edge of the growth
cone to zero (Walter, Allsop, & Bonhoeffer, 1990). Gradient detection by
the former mechanism requires a sufficiently high percentage change p in
concentration over distance w, while the latter requires a sufficiently high
absolute concentration difference AC over w. Three additional constraints
limit gradient detection. First, the local external concentration must be less
than a critical value Chigh, at which most receptors are saturated. Second, it
must be greater than a critical value Ciow, at which an insufficient number
of receptors are bound to overcome noise. Ciow and Chig vary relative to
the dissociation constant k, for the receptor-ligand complex. Third, the local
concentration must also be greater than a physical limit Crose, which is ky
independent. At this concentration, the number of ligand molecules in the
vicinity of the growth cone is so small that over the time scales of relevance
to the growth cone, thermally induced fluctuations wash out the gradient
signal (Tranquillo & Lauffenburger, 1987).

2 Maximum Guidance Distance

What is the maximum range 7max for which guidance is possible for the
two mechanisms above? The optimal gradient for case 1 has a constant
fractional change across the width of the growth cone w for all positions:
an exponential gradient. Consider C(r) = Coe™ where C is concentration,
r is distance, and Cg and a are constants. Requiring a percentage change of
p (= AC/C) across distance w yields 4 = p/w. The maximum distance for
which C > Cyow is achieved when Cp = Chigh. This gives

w.  Chgh

rmax=;1 g

. 2.1
¢ C.low ( )

The optimal gradient for case 2 has a constant absolute concentration change
across the width of the growth cone: a linear gradient. Consider C(r) =
Co — ar. Requiring a concentration change of AC over distance w yields
a = AC/w. Again the optimal value of Cg is Cugn. For the analogous case of
leukocyte chemotaxis, it is known that sensitivity to gradients is optimized
when the external concentration is equal to the dissociation constant k; of
the relevant receptor (Devreotes & Zigmond, 1988), which yields AC = pk;.
This gives

Chigh — Clow
Fonax = . high — How 2.2)
P ka
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Whatare plausible parameter values? We assume a growth cone diameter
w (including filopodia) of 20 m. Direct evidence (Baier & Bonhoeffer, 1992),
analogous data for leukocyte chemotaxis (Devreotes & Zigmond, 1988), and
theoretical considerations (Tranquillo & Lauffenburger, 1987) suggest that p
is about 2 percent. Data for leukocyte chemotaxis suggest that Ciow ~ k3/100
and Crgn & 10k; (the asymmetry is due to down-regulation of receptors at
high external concentrations) (Zigmond, 1981). Assuming Ciow > Cnoise
yields rmax ~ 0.7 cm for the exponential case (see equation 2.1) and rmax ~
1 em for the linear case (see equation 2.2). Note that these values scale
linearly with the size of the growth cone and do not depend on ky. The
calculation assumes that the growth conecan detectp = 2 percent for Chigh >
C > Ciow, whereas in fact it is likely that p needs to be much larger away
from C = k;. Correcting for this would reduce rmax in both cases. Similarly
if growth cones employ a combination of the two mechanisms, #max would
again be reduced: 1 cm is thus an upper bound.

Three obvious scenarios for how axons could be guided over larger dis-
tances are as follows. First, there could exist a series of spaced gradients
of different ligands, each binding to the same or different receptors and
guiding the growth cone over only a portion of the full distance. Second,
there could exist overlaid gradients of different ligands, each competing for
occupancy of the same receptor. Appropriate differences in affinity would
allow guidance in multiple regions. Third, there could exist multiple recep-
tors on the growth cone for the same ligand, with different affinities. Each

would guide the growth cone over the segment of the gradient lying within
its appropriate concentration range. Note that these considerations apply

to attractant as well as repellent guidance molecules, or to combinations of

both.

3 Noise Limits to Receptor-Ligand Affinity

To maximize guidance distance, it is clearly necessary to choose Ciow >
Choise- An accurate calculation of Cpeise requires knowledge of parameters
such as the length of time over which an axon integrates signals from its
receptors before assessing a gradient value, which has not been measured.
Here instead a conservative order of magnitude estimate for Croise is made.
We assume, as an extremely rough estimate, that 100 molecules in the vicin-
ity of the growth cone are sufficient for a 2 percent gradient to be detected.
This means that the growth cone can distinguish 50 molecules on one side
from 51 on the other. Imagine that the growth cone plus filopodia occupies
a cube of side length 20 um; this has a volume of approximately 10! liters.
One hundred ligand molecules in this volume correspond to a ligand con-
centration Cr ~ 0.01 nM (note that the proportion of the cube occupied by
the body of the growth cone, and thus unavailable to the ligand molecules,
is small). Equating this with the lower limit due to the dynamics of receptor
binding, Ciow = k4/100, yields k; ~ 1 nM. We suggest that a k; of very

Copyright © 2001 All Rights Reserved



524 Geoffrey J. Goodhill and Herwig Baier

roughly 1 nM represents a lower limit for axon guidance receptor-ligand
complexes.! A receptor-ligand affinity significantly higher than this (i..,
ki <1 nM) would not improve the accuracy of gradient reading. A signifi-
cantly lower affinity would require comparatively large amounts of factor
to be produced. An alternative reverse-engineering argument based on the
same principle is that the k; of the receptor-ligand complex could predict
the actual signal-to-noise requirements of gradient reading.

4 Applications to the Retinotectal System

Two recently identified repellent axon guidance molecules are believed to be
involved in the formation of the retinotectal projection: ephrin-A5 (Drescher
et al., 1995) and ephrin-A2 (Cheng, Nakamoto, Bergemann, & Flanagan,
1995; Nakamoto et al., 1996). Both are expressed as gradients in the chick
optic tectum, and both bind to one family of receptors, some members of
which are expressed on retinal growth cones (for review, see Friedman &
O’Leary, 1996a). The ephrin-A2 gradient spans the entire tectum, while the
ephrin-Ab gradient is shifted posteriorly in the tectum, being absent from
the anterior tectum (where retinal axons enter) (Cheng et al., 1995; Drescher
etal., 1995; Nakamoto et al., 1996). k; values have recently been measured in
vitro for ephrin-A5 and ephrin-A2 for three growth cone receptors: EphA3,
EphAS5, and EphA4. These values are as follows, for ephrin-A5 and ephrin-
A2, respectively: EphA3: 0.144 nM/0.86 nM; EphA5: 0.616 nM/8.62 nM;
EphA4:0.622nM/12.7 nM (Monschau et al., 1997). In each case, the value for
ephrin-A2 is roughly an order of magnitude higher than that for ephrin-A5.

The chick optic tectum extends over 6-9 mm during formation of the
retinotectal map. The distance that the farthest projecting retinal growth
cones have to travel across its (bent) surface is well over 1 em. Qur cal-
culations predict that if retinal axons are guided within the tectum solely
by gradient mechanisms, then some method for extending guidance must
be operating.? We suggest that retinal growth cones could use the same
receptor(s) for both ephrin-A2 and ephrin-A5, with the low-affinity ephrin-
A2 gradient providing guidance in the anterior tectum, the high-affinity
ephrin-A5 gradient providing guidance in the posterior tectum, and a com-
bination of both gradients providing guidance in the middle. In addition,

1 This calculation applies to both substrate-bound and freely diffusing ligands and
also analogously to the sensing of a gradient on a two-dimensional surface.

2 The situation is apparently more involved: only the nasal-most retinal axons traverse
the entire tectum. The more temporal the axons’ site of origin in the retina, the farther
anteriorly they terminate in the tectum. This graded response to tectal cues, such as ephrin-
Ab, is possibly reflected by a gradient of receptor level, such as EphA3 (Drescher et al.,
1995), in the retina. However, temporal axons are able to navigate to their appropriate
tectal target if misrouted or surgically displaced, suggesting that they can utilize gradient
information in tectal regions that they normally do not encounter.
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the affinity values for ephrin-A5 and ephrin-A2 given above are all within
an order of magnitude of our theoretical lower limit of 1 nM, which is rea-
sonable agreement given the crudeness of our calculation. (However, these
are in vitro measurements, which may differ from values in vivo.)

5 Regulation of Gradient Shape

An unresolved issue of both biological and theoretical interest is how gra-
dient shape can be regulated in an embryonic field (Crick, 1970). Some axon
guidance molecules, like netrin-1 (Kennedy et al., 1994; Serafini et al., 1994),
are diffusible factors that are secreted by target cells (Tessier-Lavigne &
Placzek, 1991; Kennedy et al., 1994). Simple diffusion yields gradients that
are inefficient when growth cones have to traverse distances greater than 1
mm (Tessier-Lavigne & Placzek, 1991; Goodhill, 1997). Binding of the factor
to the substrate (e.g., the extracellular matrix) could modify the shape of
the gradient to maximize the distance and optimize the accuracy of guid-
ance. The positional information conferred by the gradients of ephrin-A2
and ephrin-A5 in the tectum is initially set up by gradients of morphogens
(Crick, 1970) and by transcription factors such as en-1 or en-2 (Itasaki &
Nakamura, 1996; Logan et al., 1996; Friedman & O’Leary, 1996b). The lo-
cal concentrations of these have to be translated into local concentrations
of guidance molecules. The translation mode is unknown, but we expect,
given the size constraints discussed here, that nature has made some effort
to optimize it. :

6 Conclusions

For the two possible mechanisms of gradient detection across the width of
the growth cone (measuring a fractional change versus a difference from
an adjustable baseline), the maximum guidance distance is surprisingly
similar (0.7-1.0 cm). However, the shape of the optimal gradient is different
in the two cases (exponential versus linear). Therefore, it should be possible
to predict the actual gradient-reading mechanism by accurately measuring
the shape of gradients of axon guidance protein in situ. Our result also has
important implications for the scalability of axon guidance mechanisms
to animals substantially larger than the rats and chickens that are most
commonly studied.
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A simple model of correlation-based synaptic plasticity via axonal sprout-
ing and retraction (Elliott, Howarth, & Shadbolt, 1996a) is shown to be
equivalent to the class of correlation-based models (Miller, Keller, &
Stryker, 1989), although these were formulated in terms of weight modi-
fication of anatomically fixed synapses. Both models maximize the same
measure of synaptic correlation, subject to certain constraints on con-
nectivity. Thus, the analyses of the correlation-based models suffice to
characterize the behavior of the sprouting-and-retraction model. More
detailed models are needed for theoretical distinctions to be drawn be-
tween plasticity via sprouting and retraction, weight modification, or a
combination.

The model of Elliott et al. involves stochastic search through allowed
weight patterns for those that improve correlations. That of Miller et al.

instead follows dynamical equations that determine continuous changes
of the weights that improve correlations. The identity of these two ap-
proaches is shown to depend on the use of subtractive constraint enforce-
ment in the models of Miller et al. More generally, to model the idea that
neural development acts to maximize some measure of correlation sub-
ject to a constraint on the summed synaptic weight, the constraint must
be enforced subtractively in a dynamical model.

1 Introduction

Models of activity-dependent, correlation-based mechanisms of neural de-
velopment (Miller 1990a, 1996a) have, for simplicity, typically used weight
modifications of anatomically fixed synapses (but see von der Malsburg,
1979; Fraser & Perkel, 1990; Montague, Gally, & Edelman, 1991; Colbert, Fall,
& Levy, 1994; Elliott, Howarth, & Shadbolt, 1996a, b). However, anatomical
changes in connectivity—for example, via synaptic sprouting and retraction
guided or stabilized by correlation-based rules—also may play important
roles in activity-dependent development and learning.

For example, retraction of axons and dendrites plays a role in many forms
of activity-dependent development. In ocular dominance plasticity, thala-
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mocortical afferents withdraw from regions of cortex that come to be dom-
inated by afferents serving the opposite eye (LeVay, Stryker, & Shatz, 1978).
Dendrites of postsynaptic neurons also have been shown to avoid inappro-
priate ocular dominance columns (Katz & Constantine-Paton, 1988; Katz,
Gilbert, & Wiesel, 1989; Kossel, Lowel, & Bolz, 1995). At the neuromuscu-
lar junction, activity-dependent competition normally leads to anatomical
retraction of the axons of all but one input to each muscle fiber (Purves &
Lichtman, 1985). However, retraction of an axon at the neuromuscular junc-
tion is preceded by significant loss of its physiological synaptic strength
(Colman, Nabekura, & Lichtman, 1997). Thus, these regressive anatomical
changes might simply follow physiological change and not play a leading
or guiding role in activity-dependent development. \

Stronger evidence for a central role for anatomical changes is found in op-
tic tectum, where there is a continuous retinotopic reorganization of the vi-
sual map throughout life. This implies that both retinotopic and, when they
occur, ocular, dominance maps in this system must be continually main-
tained amid constant anatomical rearrangement of inputs (Constantine-
Paton, Cline, & Debski, 1990; Debski, Cline, & Constantine-Paton, 1990).
Striking anatomical changes also occur during visual cortical development.
During the normal development of ocular dominance columns in cat visual
cortex, there is a huge increase in the overall number of synapses in visual
cortex (Cragg, 1975). At the same time, the terminal arbors of thalamic affer-
ents to visual cortex increase in density and branching complexity, though
not in overall extent (Antonini & Stryker, 1993a). However, in both optic
tectum and visual cortex, contro! of synapse number during development
appears to be activity independent (Hayes & Meyer, 1989; Bourgeois, Jas-
treboff, & Rakic, 1989), suggesting that activity-dependent processes help
determine which connections survive but do not influence the overall num-
ber of survivors.

Recent results suggest that activity-dependent processes can directly in-
fluence axonal sprouting in visual cortex, at least under abnormal conditions
causing denervation of a cortical region. In kitten visual cortex, closure of
one eye (monocular deprivation) for short times leads to dramatic loss of
arborizations of the thalamocortical afferents corresponding to the closed .
eye (Antonini & Stryker, 1993b). Reverse deprivation (opening the closed
eye and closing the open one) following similar periods of deprivation leads
to a strong anatomical shift in favor of the originally closed eye (Movshon
& Van Sluyters, 1981). Thus, thalamocortical afferents from the originally
closed eye appear to show significant axonal sprouting after reverse de-
privation, although this sprouting might occur only into regions that have
already been denervated by the newly closed eye (Mioche & Singer, 1989).
Similarly, following retinal lesions in adult cats, intracortical axonal sprout-
ing appears to occur into the visual cortical region that formerly responded
to the lesioned area (Darian-Smith & Gilbert, 1994).

A rapidly accumulating set of evidence suggests a possible role for neu-
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rotrophins in activity-dependent synaptic plasticity in visual cortex and hip-
pocampus (e.g., Cabelli, Wohn, & Shatz, 1995; Fiorentini, Berardi, & Maffei,
1995; Kang & Schuman, 1995; Korte et al., 1995; McAllister, Lo, & Katz, 1995;
all reviewed in Thoenen, 1995, and Bonhoeffer, 1996). This also suggests
a role for anatomical synaptic rearrangements, because in many systems
neurotrophins play a strong role in influencing sprouting and retraction of
axonal and dendritic branches (e.g., Purves & Lichtman, 1985, McAllister et
al., 1995). However, it remains unclear whether neurotrophins play a spe-
cific instructional role in activity-dependent plasticity, as opposed to, say, a
nonspecific role in regulating overall levels of sprouting. Furthermore, neu-
rotrophins are also involved in weight modification of anatomically fixed
synapses (Figurov, Pozzo-Miller, Olafsson, Wang, & Lu, 1996; Kang & Schu-
man, 1995; Korte et al., 1995).

Finally, many other experiential modifications can lead to anatomical
changes in synaptic connectivity in a variety of other neural structures
(Weiler, Hawrylak, & Greenough, 1995).

Mechanisms of activity-dependent synaptic sprouting and retraction have
notbeen explicitly included in previous correlation-based models for at least
two reasons. First, formulation of the dynamics of such mechanisms has
seemed forbidding in the absence of improved experimental characteriza-
tion. Second, the study of anatomically fixed synapses seems potentially ad-
equate to understand the behavior of more general correlation-based mod-
els. For example, if the range of retinotopically allowed axonal exploration
in a correlation-based sprouting-and-retraction model is equivalent to the
range of initial axonal connections in a similar model using fixed synapses,
then both models would explore the same space of possible connections,
and both should converge to the same “most-correlated” set of connections
within that space.

This article first shows that there is a precise such equivalence between
one very simple sprouting-and-retraction model—that of Elliott et al.,
(1996a)—and previously formulated models using fixed synapses (Miller,
1990a). Then it shows that the use of resource limitations or competitive con-
straints (Miller & MacKay, 1994) that are linear in the synaptic weights, such
as weight normalization, in the sprouting model naturally corresponds to
subtractive implementation of such constraints in the fixed-synapse models.
More generally, subtractive implementation of linear constraints emerges as
a natural result of an energy-minimization viewpoint, whereas it appeared
quite arbitrary from the viewpoint of dynamical models.

2 Equivalence of a Sprouting-and-Retraction Model and a
Fixed-Synapse Model

Elliott et al. (1996a) consider a sproutifig-and-retraction model of ocular
dominance development (see Figure 1A). A two-dimensional grid of cortical
cells receives synapses from two two-dimensional input layers, one layer
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Figure 1: Equivalence of the models of Elliott et al. and Miller et al. For sim-
plicity, the models are illustrated for the case of only a single input type (e.g., 2
single eye).

(A) Model of Elliott et al. Each synapse is given an individual label. Here, six
synapses are shown from the central presynaptic cell to the three postsynaptic
cells; these synapses are labeled from 1 to 6 (only the labels 1 and 6 are shown).
The activity at each synapse is o, € {—1,1}, where i is the synapse label. All
synapses from the same input cell have the same activity; hence, in this case o,
is identical for i = 1, ..., 6. Synaptic connections are made and broken, within
retinotopic limits described by an arbor function A, to maximize Zj,lENI 0,0,

where N, is the cortical neighborhood of synapse j, defined in the text. ~~

- (B) Model of Miller et al. The presynaptic cells are labeled by an index
@, B3, ..., and the postsynaptic cells are labeled by an index x,y, . ... There is
a single variable, S(x, ), describing the total synaptic strength of connection
between cells a and x; this is équivalent to the nuniber of synapses connecting
the two cells in the model of Elliott et al. Thus, given the configuration shown
in (A), the equivalent strengths in (B) in the model of Miller et al. would be
S(x, ) =2, 5(y, @) =3, 5(z, ) = 1.

(C) The energy maximized by both models. The graphic shows the factors un-
derlying the interaction energy between two weights, S(x, @) and S(y, 8). This—___
energy is the product of the four factors shown: the two weights, the correlation
between the two presynaptic cells C(c, 8), and the intracortical influence be-
tween the two postsynaptic locations I(x, y). Both models maximize an energy
(negative of equation 2.2, which is minimized) given by the sum over all weight
pairs of this interaction energy.

serving each eye. The input layers represent cells in the lateral geniculate
nucleus (LGN). Let each synapse from LGN to cortex be labeled by an index
i,],.... Assume that all LGN inputs have two activity states, on or off. Let
0, be a variable with value 1 if the input to synapse i is on and value —1 if
that input is off. Note that multiple synapses come from the same input cell;
the o’s for all synapses from a single input are always identical. Let N, be
the cortical neighborhood of synapse j, defined as the set of synapses on the
same cortical cell as synapse j or on any of the four adjacent cortical cells.
_TCElliott et al. (1996a) posit that synaptic rearrangements occur so as to
minimize the energy E = —% Z],teN, 0,0, that is, so as to maximize the cor-
relations between the activities of synapses on the same and neighboring

G

VD

Copyrig[\t © 2001 All Rights Reserved



™

Equivalence of Models of Neural Development 533

cortical cells. Arborizations are taken to be localized, so that synapses may
be made only within a certain arborization radius r4 of the input cell. Rear-
inangements occur subject to this and other constraints on connectivity. Input
activity patterns are selected from some ensemble. For each input pattern, a
small number of randomly chosen allowed rearrangements are tried. Most
of the model results were obtained at zero temperature, meaning that only
E-reducing rearrangements are accepted; a few results were obtained at fi-
nite temperature, meaning that E-increasing rearrangements were accepted
probabilistically. This discussion focuses on the zero-temperature case.
To see the equivalence to previous fixed-synapse models, let Greek letters
«, B, .. .represent retinotopic position in the input layers, and Roman letters
X,Y, ... position in the cortical layer. Let st 9(, o) represent the number of
synapses from the LGN neuron at position a in input layer I to the cortical
cell at x. Let o(cx) be the activity (+1) of the neuron at position c in input
layer I. Define an intracortical function I(x,y) tobe 1 if x = y or if xand y

are cortical neighbors, and 0 otherwise. Then the energy E = ~1 i eN, 010
can be rewritten as” \ - N
__1 Iix, )0l [y, )07
e B2y L Iy [s'x. o' (@)] [ 3. 0007 )]. @1

Assuming that the number of synaptic rearrangements per input pattern is
small, so that LGN activity patterns may be averaged over, this energy can

be rewritten as (see Figure1C)
e N

E=-

N =

2. S'x @l yCensy, o), 22)
xy.e.B.L] i

where C(a, g) = (07(a)0’(p)), the angle brackets signify average over input
patterns, and the notation E has been retained for (E). Define the arbor
function by A(x,a) = 1,7 |x — a| < ra; A(X,a) = 0, otherwise. Then the
localization of arborizations is taken into account by minimizing E subject
to SI(x, a) = 0 whenever A(x, a) = 0.

‘16’\* The correlation-based models studied in Miller et al. (1989) and Miller

(1990a, 1990b, 1994) begin from equations that describe (1) simple Hebbian
or other correlation-based plasticity of anatomically fixed synapses and (2)
cortical activity as a function of the input activity pattern. These equations
are combined and averaged over the ensemble of input activation patterns,
to arrive at equations for the development of synaptic connectivity of the
form -

Ly _ 1 7 “«
7500 @) = A, "),f,:;,,“"’ Y)C (o, 15 (y, 5). ‘ 2.3)
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Here, S/(x, o) represents the total synaptic strength—the average synaptic
strength times the number of synapses—from « in layer I to x. A(x, «), the
arbor function, describes the retinotopically allowed anatomical strength o.
connections from an input at « to a cortical cell at x. I(x, y), the intracortical
interaction function, describes the influence of synapses at cortical position
y on the growth of simultaneously active synapses at position x, via intra-
cortical connectivity and /or diffusion of trophic or modulatory factors. The
correlation functions CY(a, g) describe the correlation in activity between
an input at position 8 in LGN layer ] and one at « in LGN layer I. Assuming
that I(x,y) = I(y,x) and C(a, 8) = CU(8, a), equation 2.3 can be easily
shown to represent gradient descent minimization of the energy E of equa-
tion 2.2 in the variables T!(x, @) = S!(x, a)/v/A(X, a).! Again, this energy is
minimized subject to Sl(x, a) = 0 whenever A(x, a) = 0.

Thus, an identical energy (equation 2.2; Figure 1C) is minimized by

both the sprouting-and-retraction model of Elliott et al. (1996a) and the
correlation-based models of Miller et al. (1989), which assume plasticity of
anatomically fixed synapses. However, the energies are minimized subject
to differing constraints, discussed in the appendix. The constraints imposed
in the two models have a similar character, involving upper and/or lower
limits on the strengths of individual connections and on the summed presy-
naptic and/or postsynaptic strength associated with each cell. The choices
of constraints do not represent intrinsic differences between sprouting-and-
retraction and fixed-synapse models. Either type of model mightbe run with
either set of constraints.
» However, a given set of constraints may be dynamically enforced in
different, inequivalent ways (Miller & MacKay, 1994). I now address the
form of enforcement needed to render a dynamical model equivalent to the
model of Elliott et al.

3 Constraint Enforcement and Energy Minimization

Constraints on connectivity are used in developmental models to incor-
porate several biological facts: that biological development is competitive,
so that differences between the inputs’ activities, rather than the amounts

! Symmetrize equation 2.3 by the transformation T'(x,@) = Sl(x, &)/ /AKX, o),
Ax, @) # 0; TI(x, @) = 0, otherwise (Miller, 1990a; Miller & Stryker, 1990; MacKay &
Miller, 1990). Note that Sl(x, @) = 0 whenever A(x, @) = 0, s0 no information is lost by

this trapsformation. With the stated assumptions on C and I, the zesulting equation for
1 1 x o ?ls symmetric under (x, &) < (y, 8), and performs gradient descent in the energy

E) E=—§ Y Tx /A )l y)C @ B1V/AG. BT 3, ﬁ)%

xy.a,B.L]

Ve

Since +/A(x, a)TI (x, @) = S!(x, o), this E is identical to that of equation 2:2.
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where ¥ = (y1,..., %1, ¥» ¥j+1, - - - » ¥m). With probability a(y;, ¥)) re-
place y; by the new candidate ;. Otherwise leave 3 unchanged. Use
Lemma 2.1 to evaluate p(Djy, v).

An alternative Metropolis step which updates each coordinate of Y
separately, is described in section 3.2. For the probing distribution g (-),
we use a multivariate normal N(y;, ¢2C,) with ¢ = 0.1. Conceptually,
any probing distribution that is symmetric in its arguments, that is,
8#ly) = 8(1%), would imply the desired posterior as stationary
distribution of the corresponding Markov chain. For practical imple-
mentation, a probing distribution with acceptance rates not too close
to zero or one is desirable. For a specialized setup, Gelman, Roberts,
and Gilks (1996) showed that acceptance rates of around 25% are op-
timal. In the examples, we found appropriate values for ¢ by trying
a few alternative choices until we achieved acceptance rates in this
range.

3. Given current values of (v, v), generate new values for B by a draw
from the complete conditional p(8|y, v, D). This is a multivariate nor-
mal distribution with moments described in Lemma 2.1.

4. Given current values of (8, y), replace the hyperparameters by a draw

from the respective complete conditional posterior distributions: p(uglB, op)
isanormaldistribution, p(u, |y, S, ) is multivariate normal, plog 218, u 8)

is a Gamma distribution, p(S; |y, u,) is Wishart, and p(c 2|8, v, y)
- is Gamma, as corresponds to a normal linear model. (See Bernardo &
Smith, 1994).

The proof of the convergence of this chain follows from arguments in
Tierney (1994). To judge convergence in practice, we rely on both sam-
pled paths of parameters of interest and a convergence diagnostic pro-
posed by Geweke (1992), as illustrated in examples 3 and 4. Once we have
an approximate posterior sample {61, ..., 6}, we may undertake various
posterior and predictive tasks as usual. For example, predictive means
f @) = E(Yn41l¥n+1 = x, D) can be evaluated via

R R 1&
f@®) = E@naalxni1, D) = £ 3 "E@N+1Mns1, 6 = 60).
=1

We illustrate some of these calculations in the examples below.

Example 1: Galaxy Data. We try to relate velocity (y;) and radial position
(xa1) of galaxy NGC7531 at 323 different locations (Buta, 1987). For this ex-
ample, we use only the first 80 observations. The data are shown in Figure
1. Radial positions are centered and scaled to have zero mean and unit vari-
ance, and velocities have been shifted by a constant offset of 1400. A constant
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as described in section 3, this leads to a practically useful MCMC scheme
for NN analyses.

The key observation in our scheme is that given the currently imputed
values of the y’s, we actually have a standard hierarchical normal linear
model (Lindley & Smith, 1971; Bernardo & Smith, 1994). On one hand, this
will allow us to sample easily from the posterior marginals of the weights
B and hyperparameters, given the y’s. On the other hand, this allows us
to marginalize model represented in equations 2.2 and 2.3) with respect to
B j=1,..., M, to obtain the marginal likelihood p(Dly, v). This computa-
tion will be instrumental in the Metropolis step (step ii) in our algorithm.

The following lemma provides the marginalised likelihood, where for
the sake of simplified notation, we shall omit dependence on the hyperpa-
rameters.

Lemma2l. Letz, =z;(y) = ¥y Z = Gy N, 1= D1, M, A=
Z'Z/o?, p = Z'y/o?, C = 1/0}1, 8 = ug/ofl. Let mp(y) = (A + C) Yo +9)
and Sp(y) = (A + C)~L. Then, -

_ N
plB = my(y)] [TrlwilB = mur), v1

D =
p(Dly) plB = myWly, v1 3

N
= plB = @S T plyilB = mu(¥), 7.

1=1

Proof. Conditional on y, the model in equations 2.2 and 2.3 becomes a
normal linear regression model. The posterior p(8|D, y) takes the form of a
multivariate normal distribution N[my(y), S(y)], with posterior moments
my(y) and Syp(y), given, for example, in Bernardo and Smith (1994). By Bayes’

theorem, p(8ID, y) = p(B) [Ti1 P(¥:|B, v)/p(Dly)- Substituting f = my(y)
in the last equation, we obtain the expression for p(D|y).

Our hybrid, blocking, partially marginalized MCMC algorithm for infer-
ence and prediction with FFNNSs is as follows:

1. Start with 6 equal to some initial guess (for example, the prior means).
Until convergence is achieved, iterate through steps 2 through 4:

2. Given current values of v only, (marginalizing over g) replace y by
Metropolis steps: For each ¥, j = 1, ..., M, generate a proposal y; ~
iy, with gi(y) described below. Compute

pDI7, v)p(ilv)] , (2.4)

. 7) =min |1,
a(y, ) “‘“‘[ pDly, v)p(rv)
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of their activities, determine their fate in synaptic competition (Wiesel &
Hubel, 1965; Guillery, 1972; Lo & Poo, 1991; Balice-Gordon & Lichtman,
1995); that resources are limited; and that weights are single signed and
finite. Because we know virtually nothing of the mechanisms by which bi-
ological competition is achieved, there is little biological guidance as to the
form such constraints should take or the manner in which they should be
implemented (see the discussion in Miller, 1990a, 1996b; Miller & MacKay,
1994).

In the statistical model of Elliott et al., connection patterns are searched
for those that decrease the energy. The search consists of a sequence of
small, random perturbations of synaptic connectivity. Constraints on con-
nectivity are enforced by limiting the perturbations to those that obey the
constraints. For example, to enforce constraints preserving total synaptic
strength projected by each afferent, and retinotopically restricting the corti-
cal locations accessible to each afferent, perturbations consist of movement
of a randomly chosen synapse to a new cortical location chosen randomly
from among those retinotopically accessible to the corresponding afferent.

In the dynamical model of Miller et al,, a deterministic time deriva-
tive of the weights is computed at each time step. The equations must be
constrained to ensure that this time derivative respects the constraints on
connectivity. There are many ways to achieve this, which are not equiva-
lent either mathematically or in developmental outcome (Miller & MacKay,
1994). Intuitively, the space of allowed connectivity patterns forms a con-
straint surface in the space of weights. The unconstrained time derivative
may point off of this surface, in which case it must be corrected by return to
the constraint surface. But to which point on the constraint surface should
the weight pattern be moved? This freedom corresponds to the multiple,
inequivalent ways of dynamically constraining the equation.

Equivalence to the model of Elliott et al. is achieved if constraints achieve
energy minimization within the constrained space of possible weight pat-
terns. Thus, given an unconstrained energy and a corresponding uncon-
strained gradient descent dynamics, the constraint implementation must
achieve gradient descent in the energy on the constraint surface. Mathemati-
cally, this is achieved by perpendicular projection of the unconstrained gradi-
ent descent dynamics onto the constraint surface.?

In previous work (Miller & MacKay, 1994), two methods were studied
of enforcing constraints limiting the sum of weights over a cell, subtrac-
tive and multiplicative. At each time step, after adding the unconstrained

2 Beginning from a point x, the local change in energy per unit movement in direction
9,90 =1is givenby VE(x) - ¢, where VE(x) is the gradient of the energy at x. Thus, the
direction of maximum decrease of the energy along the constraint surface is the direction
with maximum dot product with the negative of the gradient vector. This is the direction
found by perpendicular projection of the negative of the gradient vector—the derivative
vector under gradient descent dynamics—onto the constraint surface.
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derivative to the weight vector, subtractive enforcement involves subtract-
ing a fixed amount from each weight to return the weight vector to the
constraint surface. Multiplicative enforcement involves multiplying each
weight by a fixed amount, and thus subtracting an amount proportional
to the weight itself. In the case of a constraint on the sum of the synaptic
weights, such as ), ; Slx, a) = Spost—o0rt, more generally, of a constraint
on a linear combination of the synaptic weights, which yields a hyperplane
constraint surface—perpendicular projection of the gradient vector corre-
sponds to subtractive constraint enforcement (Miller & MacKay, 1994).3 For
a hypersphere surface, multiplicative enforcement is perpendicular projec-
tion. For other surfaces, perpendicular projection cannot be characterized
as either multiplicative or subtractive.

If there are multiple constraints, one on each postsynaptic cell (or one on
each presynaptic cell), perpendicular projection onto the full, multicell con-
straintsurface is accomplished by perpendicular enforcement of each single-
cell constraint.* These arguments apply also to restrictions to a constraint

_region bordered by hyperplanes, such as SFos < Yo 1 §'(x, a) < Spax. Such
a constraint can be imposed dynamically by allowing unconstrained de-
velopment on the interior of the region and subtractive enforcement of the
constraint at each border. This will result in gradient descent minimization
of the energy over the allowed region.

The case of simultaneous constraints on both pre- and postsynaptic cells
is similar. Perpendicular constraint enforcement of the full set of constraints
minimizes energy. Assuming the single-cell constraint surfaces are hyper-
planes, perpendicular enforcement corresponds to subtractive enforcement.
However, the details of formulating perpendicular constraints in this case

’

3 There are some technicalities involving the use of the arbor function, discussed in
more detail in Miller and MacKay (1992, App. B). Briefly: one must work in the symmetric
T representation discussed in footnote 1, in which the dynamics are gradient descent.
There, the subtractive constraint is a perpendicular projection onto the constraint surface,
although it generally does not appear perpendicular in the S representation. In the $
representation, the constraint conserving ), ; S'(x, @) is enforced through subtraction of

amultiple of A(x—a) from % s, a). Transforming to the T representation, the constraint
conserves Z ol VAKX - @) T!(x, ) and is enforced through subtraction of a multiple of

VAX = ). Thus, the constraint is perpendicular in the T representation: it conserves
n(x) - T(x), and is enforced through subtraction of a multiple of n(x), where n(x) has
elements /A(x — ).

4 The full constraint surface is the intersection of the constraint surfaces associated
with each cell. The normals of the single-cell constraint surfaces are all normal to the full
constraint surface and to one another. The sequence of perpendicular projections onto
each single-cell constraint surface results in a projection onto the full constraint surface
along a linear combination of the single-cell normals, and any such linear combination
is perpendicular to the full constraint surface. See Miller and MacKay (1992, App. C) for
mathematical formulation of the projection operators that implement constraints on a
network of cells.
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are somewhat more complicated. These are described briefly in Miller (1997).

Constraints on the strength of individual weights are also linear con-
straints. Thus, perpendicular projection onto the hyperplane bounding the
constrained volume of allowed synaptic weights is achieved by subtract-
ing off the nonallowed weight change from the gradient descent vector.
This corresponds to a “hard nonlinearity”: dynamics are linear within the
constrained volume, but no weight changes are allowed that take a weight
beyond its allowed limits. Single-synapse constraints fail to commute with
constraints over summed pre- and/or postsynaptic weights. To avoid this
conflict, the methods for formulating perpendicular constraints described
in Miller (1997) can be used. In practice, more ad hoc methods are generally
used to resolve the conflict. While this seems unlikely to alter significantly
the developmental outcome from constrained energy minimization, this has
not been studied.

In summary, perpendicular constraint enforcement achieves gradient
descent on the multicell constraint surface. If constraints are linear in the
synaptic strengths, this is achieved by subtractive enforcement. Subtractive
enforcement thus realizes the intuitive picture that the biological dynamics
are searching, via a correlation-based mechanism, for a “most correlated”
set of inputs subject to such linear constraints. Such a search might occur
by sprouting and retraction, synaptic strength modification, or some com-
bination. While previous work (Miller & MacKay, 1994) demonstrated the
differences in outcome resulting from, and in overall energies minimized
by, subtractive versus multiplicative enforcement, the relationship to energy
minimization or correlation maximization over the constraint surface was
not previously noted.

4 Application of the Equivalence to Understand the Results
of Elliott et al.

The main results of the model of Elliott et al. are to show that ocular domi-
nance segregation will occur under their model, that the periodicity of the
resulting columns corresponds to the arbor diameter, and that the degree
of segregation increases with the distance over which inputs within an eye
are correlated.> All of these results follow directly from prior quantitative
analyses of the model of Miller et al. (which used subtractive constraint
enforcement) (Miller et al., 1989; Miller, 1990a).

The occurrence of ocular dominance column formation was shown in

5 Again, this describes the zero-temperature version of the model. By studying finite
temperature, Elliott et al. found evidence for a phase transition that separates a high-
temperature (high noise in the weight modification process), disordered regime from
a low-temperature, ordered regime. Finite temperature results, of course, also apply to
either model; one can construct a stochastic dynamics corresponding to the deterministic
dynamics at finite temperature (e.g., van Kampen, 1992, Chap. 9).
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the previous analysis to depend on two factors. First, the input activities
must be such that, after averaging over activity patterns, two inputs of the
same eye are always better correlated in their activities than two inputs of the
opposite eye at the same retinotopic separation, at least for small retinotopic
separations; and two same-eye inputs must be no worse correlated than
two opposite-eye inputs for larger retinotopic separations up to an arbor
radius.® This condition is easily met by the activity patterns used by Elliott
et al.: a circle of activated cells within a single eye, centered at a random
position, with all other cells inactive. Second, there must be some locally
excitatory interactions between cortical cells, so that the ocular dominance of
neighboring cells is coupled. This is achieved by the neighborhood function
of Elliott et al., which favors the development of correlated receptive fields
on neighboring cortical cells. -

The spatial period of the resulting ocular dominance columns was shown
previously to depend on the intracortical interaction function and the con-
straints, if any, on the total strength of projection of each input cell. The
intracortical interaction used by Elliott et al. is purely excitatory, and one
of their constraints is that the total projection from each presynaptic cell is
held constant. For this case, the period of ocular dominance columns was
previously shown to correspond to an arbor diameter, as found empirically
by Elliott et al.

The degree of segregation was shown in the previous analysis to de-
pend on the correlations in input activities. Two factors are involved. First,
when the same-eye correlations are larger than the opposite-eye correlations
only over distances small relative to an arbor radius, segregation is weak;
but as the distance over which the same-eye correlations are larger than
the opposite-eye correlations becomes larger, segregation becomes stronger.
Second, anticorrelations between the two eyes increase the degree of seg-
regation, and positive correlations between the two eyes reduce it. Elliott
et al. find that increasing the radius of the circle of activated cells used in
their activity patterns leads to sharper segregation, and for larger arbor ra-
dius, larger activity circles are needed to get a similar degree of segregation.
Furthermore, they consider two models, one of which has anticorrelations
between the eyes, the other of which has either reduced anticorrelations
or positive correlations between the eyes, and find that the latter model
requires much wider-ranging within-eye correlations (larger activity discs
for a given arbor width) to achieve a similar degree of segregation, rela-
tive to the former model.” These results are all as predicted by the previous

6 Mathematicallz: the assumption is made of symmetry between the eyes, so that
CLL = CRR and CIR = CRL, Then the condition is that CP(a) = Clt(a) — CLR(a) has
the peak of its Fourier transform at frequency 0 or at a frequency that corresponds to a
wavelength long relative to the arbor diameter.

7 In the “relocation” model of Elliott et al., all synaptic changes occur by choosing an
active synapse and relocating it; the change is accepted if it decreases the energy (in the
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analysis. A quantitative account could be made by computing the precise
within- and between-eye correlations determined by their activity patterns
and sampling procedures.

Elliott et al. also model monocular deprivation. Because they conserve
the total strength projected by each presynaptic arbor, they must model
deprivation by hand-setting the strength of each eye’s arbors. Thus, their
model deals only with the arrangements of these inputs, given a fixed differ-
ence in input strength between the eyes. As found previously in the model
of Miller et al., the period of the ocular dominance stripes is unchanged, but
one eye’s stripes become thinner and the other’s thicker. In the studies of
Miller et al,, the final strength of each eye’s projection, as well as the stripe
layout, emerged dynamically.

5 Discussion

I have shown that a simple, stochastic, correlation-based sprouting-and-
retraction model of synaptic development can be understood within the
framework of correlation-based developmental models (Miller, 1990a,
1996a), although those models were formulated in terms of modification of
anatomically fixed synapses. The various models all descend in an identical
energy, corresponding to maximizing a certain measure of synaptic corre-
lations. The analyses of the correlation-based framework accurately predict
the outcomes of the sprouting-and-retraction model. The sprouting-and-
retraction model emphasizes energy minimization or, equivalently, corre-
lation maximization. This perspective in turn provides a principled reason
for the use of subtractive enforcement of linear constraints on connectivity
(or for multiplicative enforcement of quadratic constraints).

Thus, the hypothesis in the introduction has been confirmed and sharp-
ened. Models of sprouting and retraction and of modification of anatomi-
cally fixed synapses can both explore the same space of possible connections
and converge to the same “most-correlated” set of connections within that
space. This occurs provided both maximize the same measure of correlation
over the constrained set of allowed weight patterns.

The correlation-based framework was developed to allow analysis of the
outcome of synaptic competition under a wide group of mechanisms. De-

zero-temperature version). Because all changes are conditional on a synapse’s being active,
the correlations C/(a, 8) = (¢ (a)o (8)) must also be computed conditional on this. Since
the opposite eye is always uniformly inactive, the two eyes are completely anticorrelated,
ClR(e, B) = 1 for all &, B. In their “interchange” model, synaptic changes occur by
interchanging two synapses, one active and one inactive; again, the change is accepted
if it decreases the energy. Because the changes involve an inactive as well as an active
synapse, the correlations of an inactive synapse with the inactive neurons in the opposite
eye must also be considered in computing the correlations, so the anticorrelations between
the eyes will be reduced and/or positive correlations between the eyes may be induced,
depending on the sizes of the activity circle and the arbors.
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velopment in this framework depends on biologically measurable functions
that describe correlations in the thalamic inputs, retinotopic restrictions on
arborizations, and intracortical interactions. The dependence on these func-
tions has been characterized through both analysis and simulations (Miller
et al., 1989; Miller, 1990a, 1994, 1996a). Different biological mechanisms are
distinguished by the different predictions they make for the shape of these
functions. For example, the model of Elliott et al. is restricted to positive
intracortical interaction functions.

Previously, such correlation-based models were shown to embrace very
simple models of a variety of underlying mechanisms, including activity-
dependent competition for diffusible modification factors (e.g., neuro-
trophins) by anatomically fixed synapses (Miller et al., 1989; Miller, 1990a).
Sprouting and retraction mechanisms were not previously included because
it seemed likely that density-dependent and diffusive terms may arise in
simplified models of their dynamics, for example, if there is a tendency for
sprouting to occur from more-occupied areas into less-occupied areas; and
no such terms were included in the framework studied.® Such terms do
not arise in the model of Elliott et al. because of their assumption that all
synaptic changes allowed by the constraints (see the appendix) and by the
relocation or interchange rule (the effects of which can be incorporated in
the correlation function; see footnote 7) are tried with equal probability, and
are accepted or rejected according to their contribution to the energy. That
is, synaptic densities and gradients do not affect sprouting-and-retraction
probabilities other than through the energy and the constraints.

One potential problem with the fixed-synapse formalism is that it con-
tains an initial bias in favor of weight patterns that involve uniform connec-
tivity: if weights are initialized as small perturbations around some anatom-
ical arbor function, then a weight pattern similar to the arbor function ini-
tially has a much larger size than weight patterns orthogonal to it. This can
lead to a bias in favor of the development of such patterns, even if such pat-
terns have less favorable energy than others (e.g., see the discussion of the
effect of the DC mode’s “head start” in MacKay & Miller, 1990). Although
the zero-temperature model of Elliott et al. does not necessarily avoid this
problem, a sprouting-and-retraction framework more generally may pro-

8 The probability for an input from a of type I to sprout to x may increase with its
local innervation density, Z o flx—x DSI(X', ) (here, f(x) is some weighting function);
it may decrease with total innervation density atx, 3 Lo S/ (x, '), or with the gradient
of thus density V, 2 Lo Sl(x, ') (if areas that are less innervated, either absolutely or
relative to neighboring areas, are more likely to receive sprouts; note, however, that if
total synaptic strength 1s conserved on each postsynaptic cell, this density is constant,
and its gradient is zero). The probability might also depend on the input’s total projection
strength, E o sl(x', o), or on the gradient of this total, Vo Z ” §'(x, o) (e.g., smaller
arbors, either in absolute terms or relative to neighboring arbors, might have a better
chance of making new sprouts).
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vide a natural means of avoiding such bias. The addition of noise, as in the
high-temperature version of the Elliott et al. model, may also be of benefit.

It is often stated that Hebbian rules result in a set of weights correspond-
ing to the principal component of the input data: the principal eigenvector
of the input covariance matrix. This is based on the simple case of a linear
covariance plasticity rule for a single, linearly activated postsynaptic cell.
For this case, multiplicative constraint enforcement does lead to the princi-
pal component (e.g., Miller & MacKay, 1994), which in this case minimizes
the energy of equation 2.2 over any hypersphere in weight space. However,
even for this case, on the hyperplane corresponding to a linear weight con-
straint, the principal eigenvector is not an energy minimum, and in fact it is
not in general a “special” point of any kind for the energy. That is, if Hebbian
development with linear weight constraints acts to maximize correlations,
then even in this simple case, the dynamics do not evolve to the principal
component of the data. More complex plasticity or activity rules or network
connectivity also ensure that the dynamics do not evolve to the principal
component. It is therefore quite incorrect to equate Hebbian development
with learning of the principal component.

In previous work (Miller et al., 1989; Miller & MacKay, 1994), it was noted
that ocular dominance segregation can emerge under subtractive constraint
enforcement even in the presence of partial correlation of the activities of
the two eyes (as is presumably induced by vision). Under multiplicative en-
forcement, in contrast, ocular dominance segregation cannot emerge unless

there is anticorrelation between the two eyes. Thus, subtractive enforcement
seems to give abetter match to the biology, at least in this respect. By connect-

ing subtractive enforcement to correlation maximization over the allowed
weight patterns, the work described in this article gives a natural biological
grounding to a constraint enforcement method that also seems favored (at
least relative to multiplicative enforcement) by the match of developmental
outcome to biology.

Because subtractive enforcement can lead weights to saturate at their
most extreme allowed values, it has been suggested (Miller & MacKay,
1994) that it may be a poor choice for models of adult plasticity, where
continuous plasticity occurs in response to changing input activity distri-
butions (Kaas, 1991). However, we demonstrate in Miller (1997) that this
tendency to saturation can be eliminated by combining pre- and postsy-
naptic constraints. Elliott et al. (1996b) have found that their model, which
does not show such saturation (discussed in the appendix), can accouint
for some aspects of adult plasticity. Thus, these aspects can be accounted
for by subtractively constrained dynamics. However, in their model, the
number of synapses projected by different input classes in response to a
given input activity regime is set by hand, and only the arrangement of
these synapses is determined by the learning rule. Thus, it remains an open
question under what conditions the energy-minimizing models with linear
weight constraints discussed here can account for the reversible changes
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in projection strength that occur with changes in input activities in adult
cortical plasticity. Presumably the key requirement is that the perturbations
of activity sufficiently shift the energy landscape on the constraint surface
so that the locations of the minima are shifted.

Do biological correlation-based mechanisms rely more on sprouting and
stabilization-retraction of synapses of fixed strength or on modification of
synaptic strengths? There is little evidence to guide us. The two processes
are obviously not mutually exclusive; for example, the decision whether to
stabilize or retract newly sprouted synapses may be guided by the strength-
ening or weakening of their physiological strengths. In kitten visual cortex,
the rapidity of monocular deprivation effects, which emerge physiologi-
cally within hours (Mioche & Singer, 1989), weakly suggests that physio-
logical changes in synaptic efficacy may precede (and thus perhaps guide)
anatomical restructuring of connections. This is also suggested by recent
results showing that anatomical changes in thalamocortical afferent arbors
are incomplete after 4 days of monocular deprivation (Antonini & Stryker,
1996), whereas physiological effects of monocular deprivation appear com-
plete after just 2 days (Hensch et al., 1995). Similarly, at the neuromuscu-
lar junction, anatomical elimination of a synapse is preceded by loss of its
synaptic efficacy (Colman et al., 1997), including loss of postsynaptic recep-
tors (Balice-Gordon & Lichtman, 1993, 1995). That weight modification and
axonal sprouting and retraction may be coupled is suggested by studies in
several systems showing that decrease in the number of synapses onto a
postsynaptic cell is associated with increase in strength of the remaining
synapses (Herrera & Grinnell, 1980, 1981; Jackson & Parks, 1982; Pockett &
Slack, 1982; Liu & Tsien, 1995).

Can modeling help us to distinguish between mechanisms relying on
sprouting and retraction, and those relying on modification of synaptic
strengths? To the extent to which the two are mathematically equivalent, of
course, no theoretical distinctions can be drawn. It is conceivable that practi-
cal experimental distinctions could be drawn from simple models to which
density-dependent and diffusive terms are added, as described above. How-
ever, to draw firm theoretical distinctions, more realistic knowledge of the
rules governing synaptic sprouting, retraction, and modification is needed.
It remains to be determined how such knowledge will modify the basic un-
derstandings of correlation-based development already achieved through
study of the simple models discussed here. i

Appendix: Constraints in the Two Models
?

The energy E of equation 2.2 is minimized in the two models subject to the

following constraints:

1. Localization of connectivity: Sl(x, @) = 0 whenever A(x,a) = 0, in
both models.
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2. Upper and lower limits on connection strength

e Elliottetal.: 0 < S/(x, @) for all I, x, a. No explicit upper limit.

e Milleretal.:0 < S'(x, @) < smaxA(X, a) for all I, x, &, where spmax
represents the maximum value of a synaptic weight.

3. Presynaptic total connection strength

e Elliott et al.: The total number of synapses per presynaptic neu-
ron is constant and conserved: ) Six, ) = Spre forall I, aand
for some constant Spre. To model monocular deprivation, this
constant is decreased for inputs from one eye.

/e Milleretal.: The effects of imposing a limitation on the sum over

“~“presynaptic weights, such as ¥, §'(x,a) = Spre Or 0.55pre <
> Slix, @) < 1.55pre, are considered, but such a limitation is
usually not used.

4. Postsynaptic total connection strength

e Elliott et al.: The total number of synapses per postsynaptic
neuron is constrained to remain within some range: S}‘i‘o‘;‘t <
Yo, S(x. @) < Spex for all x, where ST} (generally 1) and
Spost are constants. A model in which the number of synapses
per cortical cell is constant and conserved—that is, in which
Yol Slx, a) = Spost for all x—is also considered.

¢ Milleretal.: The total synaptic strenﬁth per postsynapticneuron
is constant and conserved: Za, 15°(% &) = Spost for all x and

for some constant Spost. \

The constraints imposed in the two models have a similar character.
One notable difference is the presence of an upper limit on the strength of
individual connections in the model of Miller et al., and the absence of such a
limit in the model of Elliott et al. In Miller and MacKay (1994), it was shown
that an upper limit on the strength of individual connections is generally
needed under subtractive constraints to attain distributed receptive and/or
projective fields (see the discussion in Miller, 1997). Yet Elliott et al., in the
absence of an explicit upper weight limit, find apparently stable weight
configurations with distributed receptive and projective fields.

There seem to be at least two explanations. First, as discussed in Miller
(1997), the combination of pre- and postsynaptic constraints can eliminate
the need for an upper weight limit. Second, the particular intracortical inter-
action used by Elliott et al. may play a role. The self-interaction L;; of a con-
nection T; = T!(x, a) (see footnote 1) with itself under the gradient descent
dynamics is Ly = +/A(x, 0)I(x, )C" (e, a)/A(X;, @). The interaction L, be-
tween two different connections from the same input cell, T; = T!(x, a) and
Tj = Ty, o) is Ly = AKX a)I(x, y)C!(a, a),/A(y, o). Given constraints

Copyright © 2001 All Rights Reserved



544 Kenneth D. Miller

on only presynaptic cells, an upper weight limit is required if L;; > |Ly| for
all j # i, where j and i are labels for two weights from a single presynaptic
cell (Miller & MacKay, 1994). This condition is not satisfied in the model of
Elliott et al. because I(x,y) = 1 both for y = x and for y the neighbor of
x, and A is constant where it is nonzero. Thus, a given input may equally
well distribute its weights among a cell and its four nearest neighbors, or
concentrate its inputs onto the central cell, without altering the interactions
between its connections. Thus, even if only presynaptic constraints are ap-
plied, the model of Elliott et al. may not require an upper weight limit to
achieve distributed receptive and projective fields.
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We examine the claim that a class of sprouting-and-retraction models is
mathematically equivalent to a fixed-anatomy model. We accept, subject
to important caveats, a narrow mathematical equivalence of the energy
functions in both classes of model. We argue that this narrow equiva-
lence of energy functions does not, however, entail equivalence of the
models. Indeed, the claim of complete model equivalence hides signif-
icant dynamical differences between the approaches, which we discuss.
We also disagree that our work demonstrates that subtractive constraint
enforcement is natural in fixed-anatomy models.

Miller (see “Equivalence of a Sprouting-and-Retraction Model,” elsewhere
in this issue) has claimed that (1) a sprouting-and-retraction framework
for modeling neural plasticity (Elliott, Howarth, & Shadbolt, 1996a, 1996b)
is mathematically equivalent to a fixed-anatomy model (Miller, Keller, &
Stryker, 1989); (2) that this equivalence shows that subtractive normalization
is natural in fixed-anatomy models; and (3) that no theoretical distinction
can be drawn between sprouting-and-retraction models and fixed-anatomy
models until more elaborate models are available. We briefly examine these
claims.

First, modulo important caveats, we agree that our framework mini-
mizes, subject to similar constraints, the same energy function as Miller’s
model. The caveats are that (1) the biological interpretation of our constraints
is different, (2) our constraints do not enforce compétition, and (3) competi-
tion emerges because of the range of the variables o; used in our framework,
where letters such as i and j index axonal processes and o, € {—1, 1} repre-
sents the activity of axonal process i.

The first caveat is important because there is little biological support
for synaptic normalization. Our constraints represent biologically plausible
bounds on the minimum and maximum numbers of axonal processes sup-
ported by neurons and are not introduced as a mathematical device to en-
force competition in the absence of more detailed knowledge concerning the
biological mechanisms underlying competition (von der Malsburg, 1973).

The second caveat requires a little explanation. Our “relocation” and
“interchange” models, in which sprouting and retraction are always cou-

Neural Computation 10, 549-554 (1998)  (© 1998 Massachusetts Institute of Technology
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pled, automatically include constraints. However, another model based on
our framework, the “sprouting-and-retraction” model, uncouples sprout-
ing and retraction, and thus no constraints are enforced, either explicitly or
implicitly. Perturbations in network connectivity represent the creation of
a new connection or the destruction of an old one. This third model segre-
gates competing afferents, and in modeling anomalous peripheral activity,
no hand setting of parameters is necessary (Elliott, Howarth, & Shadbolt,
1996c¢); in contrast, Miller adjusts afferent normalization parameters.

As for the third caveat, setting 0; = —1 rather than o; = 0 to represent
afferent inactivity is enough to induce competition. This is easily demon-
strated by eliminating the contribution to the energy function that raises the
energy when pairs of axonal processes have activities such that o;+0; = 0:af-
ferent segregation then breaks down in the sprouting-and-retraction model
(Elliott et al., 1996¢). Curiously, elimination of this contribution from the
energy function in the relocation and interchange models does not lead to a
breakdown of afferent segregation, but this is not because these two models
employ constraints. Rather, it is straightforward to see that the relocation
and interchange rules lead automatically to the existence of a statistical force
of attraction between axonal processes whose activities are positively cor-
related and a statistical force of repulsion between axonal processes whose
activities are negatively correlated (see Elliott, Howarth, & Shadbolt, 1997,
for an analysis). These noncompetitive forces are by themselves enough to
induce afferent segregation, even in the absence of the competitive contribu-
tion to the energy function. Indeed, it is precisely these forces, particularly
the force of repulsion, that lead to the emergence of “cortical gaps” in the re-
location model (Elliott et al., 1996a). As to the justification for taking o, = —1
rather than o; = 0 to represent afferent inactivity, see the appendix to this
article.

Does this equivalence of the energy functions (modulo caveats) mean
that the models are equivalent? Our approach represents a set of biolog-
ical assumptions and computational techniques in addition to the energy
function. This is best seen by comparing the behaviors of the relocation and
interchange models. Both models exhibit different results when annealed
and when quenched. This is because the dynamics of minimization are dif-
ferent in both models. Thus, even though both minimize the same energy
function, the models are not equivalent; the final outcomes are not identical.
The sprouting-and-retraction model also is not equivalent to the relocation
and interchange models. For example, although the energy function is iden-
tical in all three of our models, no statistical forces exist in the sprouting-
and-retraction model (Elliott et al., 1997). Also, in contrast to Miller’s model
(Miller, 1990; Miller & MacKay, 1994), the sprouting-and-retraction model
does not exhibit an organizationally determined critical period and so is
able to accommodate adult plasticity in, for example, the somatosensory

Copyright © 2001 All Rights Reserved



Axonal Processes and Neural Plasticity: A Reply 551

cortex.! This significant difference between our framework and Miller’s
model arises because the dynamics of minimization are different. Thus,
the models are different, even though the energy functions are equivalent
{modulo caveats).

It may be argued that the minimization dynamics of a model are to some
extent arbitrary. This is true of models that have no clear biological interpre-
tation or for which the minimization procedure is simply a computational
algorithm for finding a minimum. But our minimization procedure is con-
structed as an explicit model of neurons sprouting into regions of high
neurotrophic support and retracting from regions of low neurotrophic sup-
port, with temperature as some measure of the noise affecting an otherwise
orderly process (Elliott et al., 1996a). The dynamics of minimization in our
three models represent different assumptions regarding how neurons might
maximize their neurotrophic support. We do not therefore accept that the
dynamics of minimization are less important than what is being minimized.
Indeed, the different dynamics of our three models lead to demonstrably
different behaviors and final outcomes, even though the energy functions
are identical.

Second, we do not accept that our work shows that subtractive nor-
malization is natural in fixed-anatomy models. Synaptic normalization is
typically imagined to result from the decay of synaptic weights, although
there is little reason to believe that global normalization will result from
local decay. The decay rate will almost certainly be a nonconstant function
of the concentration(s) of the decaying substance(s). Biologically, it is diffi-
cult to motivate subtractive normalization, since it assumes that the decay
rate is independent of the concentration. Computationally, we agree that
subtractive normalization is natural, since it leads to steepest-descent min-
imization. Thus, there is a tension between these two requirements, so the
claim that subtractive normalization is natural in fixed-anatomy models
entails that such models are not in fact biologically plausible.

A related point is that it is difficult biologically to motivate simultaneous
afferent and efferent normalization in fixed-anatomy models. Because nor-
malization is typically imagined to represent a limitation on some resource,
afferent (efferent) normalization represents a limitation on a presynaptic
(postsynaptic) resource. However, a synaptic weight will be some function

! To switch off plasticity in layer IV of the visual cortex, we invoke biochemical factors
(e.g., Kasamatsu, 1983; Fox, Sato, & Daw, 1989; Gu, Liu, & Cynader, 1994), where these are
controlled, presumably, by the overall level of electrical activity in the visual pathways
rather than its specific pattern (e.g., Cynader, Berman, & Hein, 1976; Cynader, 1983).
An organizationally determined critical period, such as that in Miller’s model, could be
refuted by rearing kittens under blockade of retinal activity and with direct, simultaneous
stimulation of both optic nerves (e.g., Stryker & Strickland, 1984; Weliky & Katz, 1997) so
that ocular dominance columns do not form, and then testing for a response to monocular
deprivation to see whether the critical period has been extended. Our prediction is that it
would not be.
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of both pre- and postsynaptic resources. Hence, normalizing weights over
both afferents and efferents is biologically problematic: afferent (efferent)
normalization should be over the afferent (efferent) resource only. Thus,
any attempt to suggest that simultaneously rather than consecutively im-
plemented afferent and subtractive efferent normalization will permit adult
plasticity in fixed-anatomy models runs afoul of the same biological-versus-
computational dilemma raised above.

Finally, even were the models mathematlcally equivalent, there can be
no justification for the claim that no theoretical distinction can be drawn be-
tween sprouting-and-retraction models and fixed-anatomy models. Biolog-
ical models are characterized by their underlying biological assumptions,
interpretations, and evidence, in addition to their mathematical structure. To
emphasize the latter at the expense of the former, given that the former often
legitimate procedures and techniques in one approach but not in a math-
ematically equivalent alternative, risks significantly limiting the power of
modeling and theoretical science. Theoretical distinctions are mostly, al-
though not always, meaningless only when experimental discrimination is
impossible. Anatomical plasticity is plainly experimentally distinguishable
from physiological plasticity. For a comprehensive examination of the cen-
tral role of anatomical plasticity in the development of the nervous system,
and #n attack on the view that neural development is entirely regressive,
as implicit in models such as Miller’s, see, for example, Bailey and Kandel
(1993), Purves (1994), and Quartz and Sejnowski (in press).

Appendix

Here we justify the use of o; = —1 rather than g, = 0 to represent afferent
inactivity. To do this, first we derive a general expression for an energy
function; then we manipulate it so as to extract the 6, = —1 convention.

Let the activity of afferent process i be denoted by 4, € {0, 1}, that is,
inactivity is represented by 4, = 0 Notice that the o; variables are related
to the g, variables through o, = 20— 1. The total input to the cell on which
process i synapses is taken to be }; Dyja;, where D, = 1 if, and only if, pro-
cesses i and j synapse on the same cell, and is zero otherwise. The level of
neurotrophic factor (NTF) released by the cell on which process i synapses is
takenasR; = fr (Z] Dya;), where fr is some model of the overall production
and release process. The NTF released is taken to diffuse rapidly through
the target field, with the amount available at each target cell following dif-
fusion assumed to be A, = Zl A,]R], where A,] = Ay/s; withs; = 3 Dy
being the total number of processes synapsing on the cell on which process
j synapses. The function A, characterizes the diffusion process and is as-
sumed to be appropriately normalized; we have previously used only the
nearest-neighbor function. The level of NTF available at each synapse on
the cell on which process i synapses is then assumed to be 4, = A,/s;.
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Uptake of NTF is taken to be activity dependent and is assumed to pro-
mote anatomical change, by inducing either sprouting or retraction, de-
pending on how much is taken up, and the resting level required to main-
tain existing terminals. This is quantified by defining Ei = —ai(4; - D,
where 7 is some measure of either an activity-dependent requirement or a
baseline, resting requirement by each process. Writing E; = E;/(t >, Dy,
we have

Ei=-14,) Ajfs (Z ’D]kak) +a; ) Dj. (A1)
] k i

This is a general expression for the energy of process i.
Setting v = 2 and with fr(x) = x as a simple model of the production
and release of NTF, this reduces to

E=-20,) Agai+a,) Dj. (A2)
] i

Replacing ZJ- D, by the approximate, “smeared” form 2_; Ay, we obtain
Ed
Ei=—a;) Aj2 -1 =-a) Agp,. (A3)
i ]

Since, in our models, we consider only plasticity associated with active
processes, we may replace 4, by o, in this expression. Summing over i, we
recover the full energy function using 6, and not a,, as the activity variables.
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We present rules for the unsupervised learning of coincidence between
excitatory postsynaptic potentials (EPSPs) by the adjustment of post-
synaptic delays between the transmitter binding and the opening of
ion channels. Starting from a gradient descent scheme, we develop a ro-
bust and more biological threshold rule by which EPSPs from different
synapses can be gradually pulled into coincidence. The synaptic delay
changes are determined from the summed potential—at the site where the
coincidence is to be established—and from postulated synaptic learning
functions that accompany the individual EPSPs. According to ourscheme,
templates for the detection of spatiotemporal patterns of synaptic acti-
vation can be learned, which is demonstrated by computer simulation.
Finally, we discuss possible relations to biological mechanisms.

1 Introduction and New Learning Scheme

The timing or coherence of a neuron’s input signals determines whether
the neuron behaves as an integrator or coincidence detector (Abeles, 1982).
Regarding the number of impulses that are required to exceed a voltage
threshold—for example, at the axon hillock or a dendritic site with voltage-
dependent mechanisms—temporally incoherent signals are less effective
than synchronized ones. However, if we take into account axonal and den-
dritic propagation times, significant coincidence cannot be expected for syn-
chronous impulse emission (Gliinder & Nischwitz, 1993). Consequently,
and in contrast to the prevailing paradigm that learning manifests itself in
the change of synaptic strengths, we took first steps toward a formalism for
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unsupervised learning of individual synaptic delays that aims to produce
coincident excitatory postsynaptic potentials (EPSPs) at a defined site. If
this site differs significantly from that of the synapses (of course, within the
same postsynaptic neuron), we confront the well-known communication
problem associated with any form of nonlocal synaptic coincidence learn-
ing, Hebbian learning included (see, e.g., Palm, 1982, and section 5 of this
article). While other authors account for delay changes by synaptic selection
from a multiplicity of axonal or dendritic pathways with different propaga-
tion times (e.g., Gerstner, Ritz, & van Hemmen, 1993; Hopfield, 1995; Miller,
1989; Tank & Hopfield, 1987), we propose postsynaptic processes. Promising
candidates for adjustable delays between synaptic activation (transmitter
binding) and the generation of a postsynaptic potential (opening of ion
channels) are experimentally demonstrated molecular messenger cascades
(Hille, 1994; Wickman & Clapham, 1995) that we consider as structurally
less costly than the approach noted in the previous sentence (cf. section 5).

Aside from solving timing problems in neural circuits, delay learning
can serve the evaluation of spatiotemporal patterns of synaptic activation
(Carr, 1993; Eggermont, 1990; Wang, 1995). For such computational pur-
poses, the idea of adjustable delays has been considered by several authors
(Baldi & Atiya, 1994; Eckmiller & Napp-Zinn, 1993; Gliinder & Nischwitz,
1993; Jansen, Bluhm, Napp-Zinn, & Eckmiller, 1991; Napp-Zinn, Jansen,
& Eckmiller, 1996), and recently Hopfield (1995) has suggested a neural
pulse position modulation with intensity-invariant demodulation by “co-
ordinated time delays.” For nonspiking networks, learning schemes have
been formulated by Baldi and Atiya (1994), Bell and Sejnowski (1995), Bo-
denhausen and Waibel (1991), and Tank and Hopfield (1987), but to our
knowledge, no mathematical framework for unsupervised delay learning
in pulse-coupled neurons has yet been published. )

This article relates our threshold rule (Gliinder & Hiining, 1996) for unsu-
pervised learning of synaptic delays to the gradient descent scheme, Figure 1
shows three synapses of a neuron that are activated at times t,,; and their
EPSPs delayed by t,. The idea is to determine the delay changes At, during
every time interval T where the somatic or a local dendritic depolarization
u(t), that is, summed EPSPs, is above a learning threshold 6 (see Figure 2).
For their computation we must assume a secondary process that accompa-
nies each EPSP and determines the amount and direction of the changes.
With this postulated learning function A(t), the delay change is

* Ar~ /[u(t) —01- At — ot — T) dt. 11
T v~

1 . ', ' - 5 l .
"Thus we propose delay changes proportional to the temporal integral of the
weighted learning function, where the weighting term is the suprathreshold
depolarization u(t) — 6 > 0. A good choice for the learning function A(f) is

the EPSP function’s negative derivative (see section 3).
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Figure 1: Differently timed (f,,) activation of three synapses at a cell or cell
patch evokes delayed (r,) EPSPs that result in the net depolarization u(t). The
continuously adjustable delays are to be learned for coincident EPSPs.

In the next section we present a gradient descent approach to synaptic
delay learning, from which a first learning function is derived, and we

introduce the computation of the delay changes at the time of maximum
depolarization. In section 3, we further develop this scheme to our threshold
ruleand generalize the concept of the learning function. We proceed with the
simulated formation of a detector that becomes tuned to a spatiotemporal
pattern of synaptic activation, and we consider the issue of stability. In the
conclusion, we briefly relate our theoretical investigations to known and
expected biophysical and neurobiological mechanisms.

2 Relation to Unsupervised Gradient Descent Learning

We relate the unsupervised learning of synaptic delays to schemes of er-
ror minimization by using the mathematically convenient parabolic EPSP
function (see Figure 2A),

1-2 for-1<t<1 )
h”(t)_[ 0 else :

For reasons that will soon becomie evident, we define the activation onset
(beginning of the transmitter binding) of synapse i as tact i = tref — t,. With
a relative activation time ¢, > 0, it then precedes the reference time t,¢ at
which the delay changes are computed. We assume that N excitatory and

Copyright © 2001 All Rights Reserved
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linearly transmitting synapses contribute—each with a single EPSP—to a
neuron’s depolarization u(# = tf). For this to happen, the synaptic delays
1, must obey the relation |t; — ©;| < 1. Then the summed potential is

u(t =te) =N—)_(t, — )"

Clearly, u(t = t.) becomes maximum for N coincident EPSPs, which can
be achieved by minimizing—through gradient descent—the squared Eu-
clidean distance between the relative activation times ¢, and the associated
delays 7. This leads to the well-known learning rule, here for synaptic de-
lays At ~ b —1,. Unfortunately, the relative activation times ¢, are unknown
to the neuron. However, formally #, —1; can be expressed by the derivative of
the EPSP function as —% %hp (t + t, — T,)|1=0, using e = 0 for simplicity. An
essential point of this article is that such a secondary and clearly hypothet-
ical signal is indispensable. It accompanies each EPSP (see similar ideas in
Gerstner et al., 1993), and we refer to it as a synaptic learning function A(¥).
For the parabolic EPSP hy(t), the learning function resulting from gradient
descent is Ay(t) ~ —g;hp(t) = 2¢ for —1 < t < 1 and zero where the EPSP is
zero as well. At the reference time, all EPSPs’ learning functions are sam-
pled to give the delay changes (learning increments) of the corresponding
synapses.

Although specific signals may exist that define a reference time, we now
propose to consider the time at which the depolarization u(t) is maximum.
If the sum of N parabolic EPSPs exhibits a single maximum, then the hereby
defined reference time becomes fmax = r\lr 3> (n — t) and the maximum
potential is u(tmax) = N — €112, with the components of the error vector

a=t-1)— %) -1
j

Hence, if we keep to the learning function A, (), we arrive at thelearning rule
A1, ~ ¢, (Hiining, 1995). Here, the sampling of the learning function takes
place at the maximum of the depolarization. Although this signal-defined
reference time is less ad hoc, maximum detection is difficult to implement,
highly sensitive to noise, and thus biologically quite implausible.

3 Tempeorally Distributed Delay Learning (Threshold Rule)

As a scheme for the unsupervised learning of synaptic delays that is more
robust with respect to noisy potentials we finally propose the depolariza-
tion-dependent threshold rule (see equation 1.1). With this scheme, delay
changes are executed either continuously during or at the end of learn-
ing intervals T,, for which the net depolarization remains above a learning
threshold 8 (see Figures 2A and 2B, bottom). Although learning defined by
equation 1.1 appears functional also without the suprathreshold function
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Figure 2: Evaluation of individual synaptic delay changes Az, from the net de-
polarization u(f) (bottom) of a cell patch with four active synapses. For every
synapse, we show an EPSP, its learning function A (dashed line, except bot-
tom), the weighted learning function v - A (with v(t) = u(t) — 6 > 0), and its
integral (dotted line) that is proportional to the delay change. EPSP shape h(f):
(A) parabolic, h,(f) = 1 — #? for —1 < t < 1; (B) a-function, h,(f) = ot - e for

t>0.

v(®) = u() —0 > 0, we include this weighting to avoid conflicting and some-
times stable oscillatory delay changes that otherwise can result from con-
curring activation patterns at successive learning intervals (see section 4).
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If every parabolic EPSP and therefore the associated synaptic learning
function A, (t) ~ — g;h,, (#) entirely cover the learning interval, we obtain from
equation 1.1 the learning rule At, ~ V, - ¢, with the suprathreshold area
Ve = fTu [u(t) — 6] dt. Figure 2A depicts a situation where three parabolic
EPSPs cover the learning interval, while a fourth EPSP comes later and is not
captured. In contrast to schemes relying on reference times, where EPSPs
are not captured if they do not contribute to the sampled depolarization,
our threshold rule shows a gradual coupling of EPSPs that only partly reach
into the learning interval. In the latter case, the delay changes increase with
every presentation of a spatiotemporal activation pattern until an EPSP’s
maximum enters the learning interval. This behavior becomes pronounced
with more realistic EPSPs—that is, with unimodal functions that steeply
rise and slowly decay. (For asymptotically decaying EPSPs, we reasonably
assume learning functions of finite duration A(t > t;) = 0, withh(t > t,) < ¢,
where ¢ may depend on the noise level.) With this kind of asymmetric EPSP
function and A(t) ~ —%h(t), early EPSPs will be captured long before their
maxima enter the learning interval, whereas late EPSPs, which rise after the
interval, either fail to be captured (the fourth synapse in Figure 2B) or create
a separate learning interval (for a lower threshold than in Figure 2B).

Because various synaptic learning functions are feasible for a given uni-
modal EPSP function h(t), we have investigated general requirements. Ev-
idently learning functions must change sign from minus to plus in order
to give the direction of the delay changes. Formally, we have found that all
learning functions A(f) = — 4, f{h(#)} with any monotone increasing function
f comply with the demand that learning must stop, that is, the integral (see
equation 1.1) must vanish, if coincidence of the EPSPs is reached (Hiining,
1995). This holds for all threshold settings. Function f permits one to tai-
lor the properties of the learning process. For instance, it may serve the
smoothing of a learning function’s otherwise discontinuous onset and the
restriction of its duration. Furthermore, we can conclude that coincidence
learning still works with EPSPs of various amplitudes.

4 Simulation of Spatiotemporal Template Learning

We demonstrate unsupervised synaptic delay learning by the simulated
formation of detectors for spatiotemporal patterns of synaptic activation.
As an example, we consider the time courses of activation at 10 synapses
of a formal neuron (see Figure 3A). Each of the two distinct patterns lasts
longer than a single EPSP. Before the repeated presentations of the pattern
pair, the 10 synaptic delays are randomly distributed in the interval 0.5A
< 1; < 3A, where A is the duration of the parabolic EPSP. Therefore, and
because both patterns are well separated in time, the neuron, at best, will be
tuned to one of them. A steady time course of the neuron’s depolarization
(see Figure 3B) is reached after 21 presentations of the pattern pair. Owing to
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Figure 3: Formation of templates for spatiotemporal patterns. (A) Sample of the
stimulation patterns at 10 synapses of a neuron. (B) Steady time course of the
net depolarization after delay learning. (C) Final delay configuration 7 ().

the greater similarity of the first pattern to the specific random initialization,
the threshold rule has produced a detector for this pattern which is obvious
from the final synaptic delay configuration (slightly imperfect template)
depicted in Figure 3C.

Apart from the functionality of delay learning with the threshold rule, our
simulation illustrates the effect of temporally limited EPSPs and learning
functions, as well as the competition of different patterns. Aslong as an EPSP
contributes to the suprathreshold depolarization, the corresponding synap-
tic delay becomes adjusted, which in our example is not fulfilled for the sec-
ond synapse. Furthermore, if both patterns produce suprathreshold depo-
larizations, we then obtain opposing delay changes. However, oscillations
are avoided by the weighting term of equation 1.1, which drives the learn-
ing process toward the pattern that evoked the largest initial suprathreshold
voltage.

Because a neuron’s delay tuning is not changed by patterns that remain
subthreshold, a sufficiently high learning threshold retains a tuning even
without any further occurrences of the pattern that gave rise to it. Therefore,
a threshold that adapts toward the peaks of the depolarization provides a
stable delay tuning. Intermediate thresholds cause an adaptive averaging
behavior. Accordingly, the delay tuning can follow a slowly changing and
repeatedly presented pattern of synaptic activation (Napp-Zinn et al., 1996),
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provided the threshold is crossed at every occurrence. For small, random
fluctuations of a pattern, the delays are expected to be tuned to the temporal
mean, because the integral (see equation 1.1) behaves approximately linear
around the zero crossing for realistic EPSP functions.

5 Conclusion

In summarizing our results, in particular concerning their neurobiological
implications, we have to speculate about possible biological mechanisms,
not an easy task for theoreticians. However, our general impression of the
recent progress in the investigation of synaptic mechanisms gives us a good
confidence that suitable biological mechanisms for anything that is logically
possible will be found eventually. So one should not worry too much about
the concrete mechanisms proposed below.

We have presented a systems view of unsupervised and robust coin-
cidence learning in pulse-coupled neurons that essentially relies on three
assumptions.

1. Only a sum of EPSPs is accessible at a defined measuring site at
which the EPSP coincidence is to be established. Similar to long-term
changes of synaptic strengths (Brown, Kairiss, & Keenan, 1990), synaptic
delay changes also are assumed to depend on pre- and postsynaptic po-
tentials. With respect to postsynaptic potentials, local dendritic learning is
based on dendritic depolarization, whereas more global neural learning re-
lies on the potential at a neuron’s axon hillock. The process of delay learning
will lead to coinciding EPSPs at these sites.

2. The time course of the voltage above a learning threshold at the
measuring site is available to the individual synapses. Voltage thresholds
are biologically plausible (Artola & Singer, 1993), and their adaptation ac-
cording to the long-term mean of the depolarization was proposed earlier
(Bienenstock, Cooper, & Munro, 1982). In the case of local dendritic learn-
ing schemes, the suprathreshold depolarization-can easily be sensed by
synapse-related molecular mechanisms. Rules that are nonlocal within the
postsynaptic cell require the suprathreshold depolarization to be instanta-
neously signaled, for example, from a neuron’s axon hillock, back to all its
synapses, which appears more involved. This well-known and indeed fun-
damental communication problem exists with any form of nonlocal synaptic
coincidence learning, Hebbian learning of synaptic strengths included. Ex-
cept for the work reported by Stuart and Sakmann (1994), to date we have to
rely more on speculations than on direct experimental evidence for possible
communication mechanisms. Interestingly, Hebbian learning today gener-
ally is assumed local (Brown et al., 1990), although Hebb (1958) described a
global scheme: “When an axon of a neuron x is near enough to fire a neuron
y and does so, some change takes place such that x becomes more effective
at exciting y. What is this change and how does it work? This is a question
to which we have no final answer.” In case of passive or active dendritic
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propagation of action potentials (e.g., back from the soma to the synapses),
these potentials will act in the same way as the dendritic depolarizations
do in our scheme; they will define the learning intervals and the weighting
of the learning function.

3. A uniform learning function is attributed to every synapse and is
triggered at the opening of its ion channels (EPSP onset). Delay learning,
as proposed in this article, requires that the synapse contributes to the post-
synaptic depolarization and that a postulated differentiating (biochemical)
process parallels its individual contribution. This kind of process could be
realized by the interaction of an intracellular messenger, such as an activated
G protein, and channel proteins (Destexhe, Mainen, & Sejnowski, 1995).

Under these circumstances, we have shown how to compute the de-
lay change of an active synapse from the values of its learning function in
conjunction with its suprathreshold depolarization. Biologically speaking,
we assume the suprathreshold depolarization to have a nonlinear influ-
ence on the differentiating (biochemical) process. During the periods of
suprathreshold depolarization, this process could, for example, modify the
temporal behavior of intracellular messengers that determine the delay be-
tween the transmitter binding to a transmembrane receptor and the intracel-
lular opening of ion channels. This modification could be similar to changes
of presynaptic messenger cascades, as initiated by retrograde diffusion of
nitric oxide (Montague, 1993), that are hypothesized to cause long-term
changes of synaptic strengths. In this respect, we do not rule out alterna-
tive mechanisms for delay changes, such as modifications of the temporal
behavior of presynaptic molecular processes. Currently there is increasing
interest in membrane-delimited mechanisms of rather direct and thus com-
paratively fast (within a second) interaction between activated G proteins
and ion channels (Hille, 1994; Wickman & Clapham, 1995), but to our knowl-
edge, on a millisecond time scale, the properties and their modifiability of
these interactions have not been investigated yet.

Although the concrete biophysical or biochemical realization of delay
learning is still unclear, we have demonstrated that this simple learning
mechanism is well within the possibilities of our current neurobiological
knowledge and would provide a useful addition to the commonly accepted
plasticity of synaptic efficacy.
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Neural Processing in the Subsecond Time Range in the
Temporal Cortex

Kiyohiko Nakamura
Department of Computational Intelligence and Systems Science, Tokyo Institute of
Technology, Yokohama 226, Japan

The hypothesis that cortical processing of the millisecond time range
is performed by latency competition between the first spikes produced
by neuronal populations is analyzed. First, theorems that describe how
the mechanism of latency competition works in a model cortex are pre-
sented. The model is a sequence of cortical areas, each of which is an array
of neuronal populations that laterally inhibit each other. Model neurons
are integrate-and-fire neurons. Second, the model is applied to the ven-
tral pathway of the temporal lobe, and neuronal activity of the superior
temporal sulcus of the monkey is reproduced with the model pathway. It
consists of seven areas: V1, V2/V3, V4, PIT, CIT, AIT, and STPa. Neural
activity predicted with the model is compared with empirical data. There
are four main results: (1) Neural responses of the area STPa of the model
showed the same fast discrimination between stimuli that the correspond-
ing responses of the monkey did: both were significant within 5 ms of the
response onset. (2) The hypothesis requires that the response latency of
cortical neurons should be shorter for stronger responses. This require-
ment was verified by both the model simulation and the empirical data.
(3) The model reproduced fast discrimination even when spontaneous
random firing of 9 Hz was introduced to all the cells. This suggests that
the latency competition performed by neuronal populations is robust. (4)
After the first few competitions, the mechanism of latency competition
always detected the strongest of input activations with different latencies.

1 Introduction

Primates recognize and respond to complex visual stimuli within half a
second. Signals from the retina take 25-50 ms to reach the primary visual
cortex V1, and the motor system requires about 150 ms to produce a response
(Kalaska & Crammond, 1992). This means that 200-300 ms is available for
cortical processing. Not only is the processing time restricted to less than a
third of a second, the firing rate of single cortical neurons is usually less than
50 Hz. Each neuron thus produces as few as 10 spikes during the processing.

The temporal constraints also limit the number of processing steps (Oram
& Perrett, 1994). The time between spike generation in one cell and its in-
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fluence on the firing rate of a postsynaptic cell is about 5 ms. Latency of the
earliest cell response in the superior temporal sulcus (STS) is 70-100 ms,
and cells in the STS can discriminate forms of visual stimuli within 5 ms
of response onset (Oram & Perrett, 1992). This suggests that the processing
from the cortex V1 to the STS could take place within about 50 ms and thatas
few as 10 synaptic relays occur during the processing. The ventral pathway
of form recognition passes through seven areas—V1, V2/V3, V4, PIT, CIT,
AIT, and STPa—so only one or two synaptic relays can occur within each
area.

This article analyzes a hypothetical mechanism that performs the cortical
processing within that time range (Nakamura, 1992, 1993a). The mechanism
was intended to account for the following characteristics. First, each cell pro-
duces as few as 10 spikes during the few hundred milliseconds available
for this processing. Second, cortical processing of that time range usually
becomes possible only after training. For example, children need to expe-
rience repeated stimulus-response cycles before they learn to discriminate
cats from other animals within a few hundred milliseconds. Third, neural
mechanisms of the brain are robust against noise because brain cells are
subject not only to sensory signals but also to many kinds of noise.

The mechanism works through two processes: latency competition and
reinforcement of cortical connections. The competition is between neuronal
populations that laterally inhibit each other (Nakamura & Ichikawa, 1989).
When the populations are activated simultaneously, those receiving the
strongest activations fire first and inhibit the others from firing. This mech-
anism detects the most strongly activated populations in the time range
of firing latency, because the first spikes indicate that the populations pro-
ducing them have been most strongly activated. Suppose that the competi-
tion functions as neural processing of every cortical area. Then the cortical
processing by way of multiple areas could be done within a few hundred
milliseconds. The process of reinforcement is to increase the synaptic effi-
cacy of cortical pathways that lead the first spikes to relevant cells of the
motor cortex. Repeated learning selectively reinforces the pathways along
which neuronal excitation producing relevant motor responses travels first
(Nakamura, 1993a).

A number of network models using lateral inhibition have been pro-
posed. In many, modules producing the strongest outputs win the compe-
tition by inhibiting the others, and stimulus selectivity emerges gradually
through computational cycles of connectivity change (Rumelhart & Zipser,
1986; Grossberg, 1987; Fukushima, 1980). A main difference from the mech-
anism presented here is that these earlier models did not take account of
temporal aspects of the competition in each cycle. As a result, they failed
to provide an estimate of time taken by each competitive cycle. Since they
have not dealt specifically with time for each cycle, their response time is
usually measured by time taken for the emergence of the stimulus selectiv-
ity. Consequently, the earlier models have been considered to describe slow
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mechanisms. The model presented here has pointed out that winners of ev-
ery neural competition are determined by firing latency and that the cycles
of connectivity change correspond to learning process to form reinforced
pathways producing the rapid and relevant responses.

Coultrip, Granger, and Lynch (1992) presented a network model of the
latency competition, in which single neurons compete and a single in-
hibitory neuron delivers lateral inhibition. This network architecture may
not work in noisy environments because damage to single neurons imme-
diately changes the results of the competition. Biological mechanisms need
to be robust and to function appropriately despite noise. The circuit of the
model presented here (Nakamura & Ichikawa, 1989) is composed of neu-
ronal populations and encodes signals in ratios of firing neurons in the
populations. Its behavior is hardly varied under noisy conditions.

Another network model using a latency mechanism, presented by Opara
and Worgbtter (1996), has demonstrated that a delay mechanism in the
early stage of visual pathway speeds up synchronization for cell assemblies
representing different objects. Although they did not take neural plasticity
into consideration, a number of studies have shown cortical plasticity in the
visual pathway of the temporal lobe. Miyashita and colleagues (Miyashita
& Chang, 1988; Sakai & Miyashita, 1991; Miyashita, 1990) have shown that
extensive training affects the selectivity of cells in the AIT cortex. Kobatake,
Tanaka, Wang, and Tamori (1993) also have reported that training makes
cells of the inferotemporal cortex responsive to the presented stimuli. These

observations suggest that the stimulus selectivity of cells might result from
the adjustment of cortical connectivity. The model here accounts for the

stimulus selectivity produced by the connectivity adjustment.

Oram and Perrett (1992) have shown that cells of the monkey STS dis-
criminate visual stimuli within 5 ms of response onset. We expect the hypo-
thetical mechanism of latency competition and connectivity reinforcement
to account for this discrimination. To see if it actually does, we developed
a model of the ventral pathway of the temporal lobe and used a computer
simulation of their experiment to see whether the model reproduced the
neuronal activity of the monkey.

2 Model

2.1 Architecture of the Model Cortex. The model cortex consists of the
sensory cortex, association areas, and motor cortex. These areas are con-
nected in series, and each is represented by an array of neuronal populations
(see Figure 1A). Every population has three types of neurons: excitatory
stellate cells, pyramidal cells, and inhibitory interneurons (see Figure 1B):
Stellate cells transmit signals to pyramidal cells, which project to inhibitory
interneurons and also send fibers to the next areas. Inhibitory neurons ex-
tend lateral projections to nearby pyramidal cells. Each cell in Figure 1B
represents not a single cell but a population of a type of cells. Because each
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as one
A
Sensory Association Motor
cortex cortex

Brain stem
Limbic system

Cell
population

x(t)

Figure 1: Model cortex. (A) Arrays of neuronal populations and connections
between them. Projections from the brain stem and limbic system pervade the
whole cortex. (B) Neuronal circuitry of a single cortical area. (C) Populations of
neurons of two types and connections between them.

cell in Figure 1B is modeled by a cell population as shown in Figure 1C,
every connection in Figure 1B represents a bundle of fibers connecting cell
populations.

& The neuronal populations need not be “columns,” but they may spatially
overlap. What is necessary for our model is the neuronal connectivity shown
in Figure 1. If the populations overlap, inhibitory collaterals (Kawaguchi,
1995; Kang, Kaneko, Ohnishi, Endo, & Araki, 1994) pervade many popula-
tions.
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2.2 Model Neuren. Each neuron is represented by a single compart-
ment, and its change in membrane potential V is given by

C@V/d)=-3Y GV +Y G, @1)
: k k

where C is membrane capacitance and G and Ej are the channel conduc-
tance and electromotive force of ion k, respectively. Conductances Gy change
when the neuron receives spikes, and we simplify the process of spike gen-
eration: When V exceeds a threshold #, the neuron fires and delivers spikes
of duration ;. After that, the neuron enters a refractory state, which lasts
7y and during which the neuron does not respond to any spikes that may
arrive. By the end of the refractory period, V has returned to the resting
potential V,,. Consecutive firing teduces the firing rate, and this is modeled
by increasing the threshold h:

dhjdt = ApS(E) — Cp(h — hy), ) (2.2)

where §(f) = 1 at time t when the neuron begins to deliver a spike and
0 otherwise and where Ay, Cy, and h, are, respectively, the increment per
spike, the coefficient of recovery, and the initial value of k. This equation
implies that firing threshold # rises by Ay, every firing and returns to the
initial value h, at the rate Cj,.

2.3 Input-Output Variables of Neuronal Populations. Thenervoussys-
tem is considered to encode information in ratios of firing neurons in neu-
ronal populations. These ratios are averages across neurons, not over time.
Let x(t) denote the ratio of firing neurons to all the neurons of a population
at time ¢. Neurons producing spikes are counted as the firing neurons. The
conductance G of a neuron receiving projections from the population is
written in the form

Gr(t) = [Wex(®) + 1]G}, (2.3)

j’l)\‘/ jwhere Gi(t) and G} denote values of Gy at time t and at x(t) = 0, respectively,
and W is a coefficient representing the effectiveness of synaptic transmis-
sion on change of conductance Gi. The value of Wy is derived from con-
ductance changes produced by single spikes (for details, see Nakamura,
1993b).

2.4 SynapticPlasticity. Synaptic plasticity of corticocortical connections
is assumed, and the synapses of connections are reinforced when the fol-
lowing three conditions are satisfied simultaneously: (1) the connections
deliver spikes, (2) the postsynaptic neurons fire, and (3) the projections
from the brain stem and limbic system are activated. The first and third
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conditions were introduced according to findings concerning the plasticity
of ocular dominance in the cat visual cortex (Karil, Dubin, Scott, & Stark,
1986; Gordon, Allen, & Trombley, 1988). Although this plasticity was found
during development and in a specific part of the cortex, it is assumed here to
function even in adults and all over the neocortex. The second condition is
based on characteristics of Ca?t, which is involved in switching biochemical
processes of plasticity. Sufficient Ca?* influx is necessary for the processes.
Since Ca?t channels are voltage dependent, a large increase in membrane
potential by firing evokes the influx. The projections from the brain stem and
limbic system may convey signals related to attention and drive. Their acti-
vation instructs the nervous system that the current sensory stimuli should

be memorized.
3 Model Analysis of Latency Competition Mechanism

The model describes how cortical processing that occurs in the millisec-
ond time range is performed and is based on the work of Nakamura and
Ichikawa (1989) and Nakamura (1993a). A sensory stimulus activates certain
neuronal populations of the sensory cortex, and these activated populations
deliver spikes to the next area, where, as shown in Figure 2A, the popula-
tions receiving the strongest connections are the first to fire. The first spikes
excite populations of inhibitory interneurons (see Figure 1B) that laterally
inhibit the other populations before they fire. Consequently, only the pop-
ulations receiving the strongest connections are allowed to produce spikes.
This mechanism is described by the following theorems. First, response
latency of neuronal populations decreases with strong activation:

KA

Theorem 1. When x(t) is a step input, response latency of neuronal popula-
tions decreases with large synaptic input Wix(£) G} under the following conditions:
(1) Synaptic input is excitatory and acts only on a single ion conductance Gy,, and
(2) increments in Wy, x(t) are nearly the same for all the neurons of the population.

For the proof, see appendix A. The assumption of step input x(f) will be
discussed in section 6.3. The conditions were introduced for analytical sim-
plicity, but they also have some biological plausibility. Condition 1 is sat-
isfied if the corticocortical connections deliver the same transmitter, and it
acts on a single ion conductance. Condition 2 holds if the input increments
are produced by an increase in x(f).

The lateral inhibition restricts firing to the most strongly activated pop-
ulations:

Theorem 2. Assume the same conditions as in Theorem 1. Then only the most
strongly activated populations fire if the projections of pyramidal cells are strong
enough to fire the inhibitory interneurons and if the resultant inhibition is strong

Copyrig[\t © 2001 All Rights Reserved



Neural Processing in the Subsecond Time Range 573

82 Tharee A, R.C

A 05 ] Input strength x(t)=0.25
> - e
u N 0.15
g 0.1
% 0.05
B o 0 10 20 30
0.5]
™ —‘—q_;,_g
s -
w
(V2]
2 -
[e]
[« %
9
& 0 10 20 30
POST-STIMULUS TIME (ms)

Sensory Association
cortex cortex

Brain stem
Limbic system

Figure 2: Neural mechanism of latency competition. (A) Responses of model
neuronal populations receiving stepwise activations of different strengths. The
abscissa and the ordinate, respectively, indicate the time after onset of the ac-
tivations and the ratios of firing neurons in the populations. (B) Responses of
neuronal populations in a single cortical area of the model (see Figure 1B). Five
rows show changes in ratios of firing neurons in the populations receiving the
same activations as in A. (C) Schematic illustration of connectivity reinforce-
ment. Bold arrows denote reinforced corticocortical connections. Filled circles
show activated neuronal populations, and open circles show unactivated neu-
ronal populations.

enough to cancel out excitation of pyramidal cells and lasts longer than the refractory
period of pyramidal cells.

Quantitative description and proof are given in appendix B. Figure 2B
shows a simulation result. Since the interneurons inhibit pyramidal cells of
their own populations as well, excitation of the inhibitory neurons is sup-
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pressed. When the circuit is released from the inhibition, it repeats the same
competitive process. As a result, the most strongly activated populations
make oscillatory firing. Note that the competitive mechanism detects the
strongest inputs with the first spikes, and their latency is as few as millisec-
onds. If processing in each cortical area is performed by the mechanism, the
cortical processing by way of multiple areas can be done in a few hundred
milliseconds. And no more than one spike is needed for each neuron during
the cortical processing. The short processing time and the small number of
spikes required for the processing meet the biological constraints already
noted.

¢ Consider how the cortical processing by way of many areas is performed

in reinforced circuits. Assume that synaptic weights of corticocortical fibers
are initially weak and set at random values. Suppose a sensory stimulus ex-
cites some populations of the sensory cortex. It follows from Theorem 2 that
only the populations receiving the strongest connections produce spikes in
the first area of association cortex. While the sensory stimulus is presented,
every activation of projections from the brain stem and limbic system se-
lectively reinforces the same connections between the firing populations
and makes the initially strong connections stronger. This makes the specific
populations of the area strongly responsive to the sensory stimulus (see
l_ﬁgy_@,ZC).l Connections to subsequent areas are reinforced in the same
way, and strong pathways running through those reinforced connections
are formed. Consequently, we have the following theorem:

Theorem 3. Assume the same conditions as in Theorem 2 and that corticocortical
connections are initially set at random strength and are so weak that only strong
activation of some populations in the projecting areas may weakly excite populations
in the target areas. When the projections from the brain stem and limbic system
are repeatedly activated under a sensory stimulus, certain pathways of the model
cortex are selectively reinforced, and neuronal populations along these pathways
become strongly responsive to the sensory stimulus.

{9)\\'

If the projections from the brain stem and limbic system convey reward
signals, connections with the motor cortex are reinforced only if activation
of their postsynaptic neurons produces reward motor responses. This is
because firing of those neurons leads to activation of the projections and
evokes the synaptic change (Nakamura, 1993). After reinforced pathways
to the motor cortex are established, sensory signals travel first along them,
and animals respond with rewarded actions.

1 Reward signals from the brain stem and limbic system are delivered after the motor
response, and sensory stimuli may therefore change before reward signals arrive. This
time delay can be offset by reverberation in the corticohippocampal circuits. A detailed
discussion of this has been published in Nakamura (1993b), which also discusses how the
neural circuit starts or stops learning.
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4 Simulation

The model was used to simulate the experiment done by Oram and Perrett
(1992).

4.1 Model of Temporal Lobe. The experimental data were obtained in
response to the presentation of visual form (head views), so the model cor-
tex was that of the ventral pathway of the temporal lobe. It consists of
seven areas: V1, V2/V3, V4, PIT, CIT, AIT, and STPa. They are connected
in series, and the V1, V4, and PIT areas also send direct projections to the
V4, CIT, and AIT areas (see Figure 3A)Fach cortical area is a 5 x 5 ar-
ray of neuronal populations (see Figure 3B), and each cell population con-
tains 100 stellate cells, 100 pyramidal cells, and 100 inhibitory interneurons.
Those neurons are connected as shown in Figure 1. The simulator includes
100 x 3 x 5 x5 x 7(= 52, 500) neurons in total. The strength of corticocortical
connections becomes weaker as the length of the connections increases, as
shown in Figure 3C. Lateral inhibition also becomes exponentially weaker
with distance. The synaptic plasticity is formulated as

AW, /dt = Cx(O)IBrE Wi — CaWy, @1

where I(#) is the firing function of the postsynaptic neuron (I(f) = 1 when
the neuron fires and 0 otherwise), r(t) is the firing ratio of the projections
from the brain stem and limbic system, and C, and C; are coefficients of
reinforcement and decay, respectively. Values of W; are assumed not to
exceed an upper limit Wi. The parameter values of equations 1 to 4 are
given in appendix C.

4.2 Stimuli. Stimuli to the model cortex were activations of neuronal
populations of the area V1. They were activated in the six patterns shown
in Figure 4. For the populations indicated by filled circles, firing ratios of
the afferent connections were increased from 0.009 (spontaneous activity) to
0.03. Since duration of spikes was set to be 1 ms, the ratio of 0.03 corresponds

Nto a firing rate of 30 Hz of single neurons.

Spontaneous activity was also introduced to all neurons: Potential V was
randomly raised above the firing threshold k, at the rate of spontaneous
activity (5/A). The rate was set at 9 Hz according to the empirical data
(Oram & Perrett, 1992).

4.3 Procedure. This study assumed that the monkeys Oram and Perrett
(1992) used had learned the head views before the experiment, and
the learning process was therefore simulated first. Initially, values Wy
of corticocortical connections were set at small random values, and the neu-
rons of STPa made no response to any stimulus. Learning was conducted.
The projections from the brain stem and limbic system were kept
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Figure 3: (A) Corticocortical connections of the ventral pathway of the tempo-
ral lobe. (B) A 5 x 5 array of neuronal populations in a single cortical area of
the model simulator. (C) Change in synaptic efficacy of lateral and corticocor-
tical connections with increasing distance between neuronal populations. The
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Figure4: Six patterns of activation of the area V1. Filled circles indicate activated

neuronal populations, and open circles are unactivated populations.
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activated—that is, r(f) was increased to 0.03—and the six stimuli were se-
quentially provided. The learning was continued until the activity of neu-
rons in the STPa was significantly different from the S/ A. The time required
for the learning depended on the values of reinforcement and decay param-
eters C; and Cy. A large value of C, reduces computational time but makes
learning unstable.

After learning, cell responses of the STPa were examined, just as in the
experiment. The six test stimuli and a control stimulus (no activations of the
area V1) were provided five times. Timing of spikes of the S/ A was different
from stimulus to stimulus. During the examination, it was assumed that
reinforcement was negligible, that is, that C, = 0.

4.4 Data Analysis. First, the same analysis that Oram and Perrett (1992)
had done was conducted. Pyramidal cells were classified according to the
mean cell response (spikes per second) over a period of 250 ms starting at
stimulus onset. In the simulation, the stimulus onset was the activation of
area V1, whereas in the experiment, it was the presentation of visual stimuli
(Oram & Perrett, 1992). Therefore, the former follows the latter by a few tens
of milliseconds. Cells were selected when analysis of variance (ANOVA)
showed that at least one test stimulus elicited activity significantly (p <
0.025) greater than that observed after the control stimulus. For each cell,
responses were categorized into three groups: Best (response to the most
effective stimuli), Worst (response to the least effective stimuli), and Mid

(response between the former two). The three categories were defined as
20% ranges of the full range of responses to different stimuli: Worst, 0~

20%; Mid, 40-60%; and Best, 80~100%. Of the selected cells, those that had
responses of all three categories were picked out.

The responses obtained in five trials were averaged within each response
category for each cell on a bin-by-bin basis (bin size was 5 ms). This yielded
a peristimulus time histogram (PSTH) with 120 bins. The latency was taken
as the first of three consecutive time bins in which the mean response was
in excess of the 95% confidence interval of the S/A. If different categories
gave different latencies, the shortest was taken as the cell response latency.
The mean firing rate of the cells during the first, second, and fifth 100 ms of
the response after the estimated cell response latency was also calculated.

Tworesponse measurements introduced by Oram and Perrett (1992) were
calculated: population response and average cell response. Population re-
sponse is PSTH profiles calculated in the three response categories for the
entire population of selected cells. They were obtained by three procedures:
(1) normalizing the response magnitude of each cell to the magnitude of the
difference between the S/ A and the peak response of the Best category, then
(2) averaging the response rate in each time bin across all cells, and finally
(3) renormalizing as procedure 1.

Average cell response was calculated from PSTHs, each of which was
shifted by the cell’s estimated response latency. The shifted PSTHs were
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processed according to the three procedures just described. Oram and Per-
rett introduced this synchronization of response onset because response
onsets of cells of monkeys were fairly widely distributed, and it was neces-
sary to examine the difference between cell responses following response
onset.

To estimate the efficiency of discrimination between different response
categories, the responses in each time bin were subjected to a two-way
ANOVA with response category being a fixed factor and cell a random fac-
tor. Firing rates above S/ A were used without normalizing the magnitude
of responses.

The simulation provided data concerning concurrent activity in multiple
cells, which was not recorded in the experiment. Concurrent cell responses
to one activation pattern were examined at the model STPa. The activation
pattern was that of Figure 4B. The concurrent cell response was calculated
as follows: For each of the three response categories, 50 cells that made
responses of the corresponding category were selected at random. The re-
sponses of the 50 cells were averaged within each response category foreach
trial on a bin-by-bin basis. The difference in average concurrent responses
between the response categories was estimated on each bin for each the five
trials with the use of ANOVA. For each category, mean firing rates of the
corresponding 50 cells were used.

Synaptic coefficient Wy change caused by learning was calculated. After
the learning period, values of Wi were averaged within each postsynaptic
neuronal population to obtain the average synaptic efficacy between neu-
ronal populations. Increments in the average synaptic efficacy from their
initial values were calculated as percentages of the initial values. The same
calculation was also performed after the first half of the learning period.

5 Results

At the end of learning, 2469 cells showed statistically significant responses
to some stimuli; they were 98.7% of the pyramidal cells (5 x 5 x 100 cells) of
the model STPa. Numbers of cells responding to the six activation patterns
are listed in Table 1 for each the three response categories. Among them,
399 cells made responses of all of the Best, Mid, and Worst categories. In
the experiment (Oram & Perrett, 1992), 44 cells were suitable for the data
analysis. For comparison, 50 of the 399 cells were sampled at random.
Change in firing rates of those cells is listed in Table 2. The PSTHS of the
cells were also calculated. A PSTH of a cell for the Best response category
is illustrated in Figure 5A-The response showed a very rapid rise followed
by a slower decline in firing rate, as did the monkey cells. The rate of rise
depends on membrane parameters C, Gy, and Ex, which were set according
to physiological data, and on synaptic efficacy Wi, which was adjusted by
learning. The decline was produced by increasing the firing threshold for
the model neurons. The rate of this decline was fitted to the empirical data
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Table 1: Distribution of Cells Responding to the Six Input Activations.

Response Category
Activation Pattern Best Mid Worst
A 1 0 398
B 210 99 90
C 0 89 310
D 139 160 49
E 49 0 325
F 0 12 250
Note: Activation pattern labels correspond to those
in Figure 4.
A B
200 200]
)
X
a.
L
u 100 1001
5 ﬂ
o
o
m I il h il (] ARt
o 0 T T T ALy TI|S/A O 61/ IR ) W 3 05 W S O 193 Y S/A
o 500 0 500
POST-STIMULUS TIME (ms) POST-STIMULUS TIME (ms)

Figure 5: Peristimulus time histograms of the Best (A) and Worst (B) response
categories of one cell.

by adjusting parameters A, and Cy,.2 A PSTH of a cell for the Worst response
category is shown in Figure 5B. The firing rate showed a small rise followed
by a rapid and complete decay.

Means of the estimated response latency for the Best, Mid, and Worst
response categories were, respectively, 41.2, 49.6, and 62.4 ms. Increments
in the mean latency from that of the Best category are shown in Figure 6.

2 There was still some disparity. Firing rates for the Best and Mid categories in the
model were larger than those in the experiment, and for the Worst category they were
smaller. Reduction of firing rates for the former categories made response for the Worst
category statistically indistinguishable from the S/A. Since this model was intended to
analyze latency competition that was related to response onset, only the decline in firing
rate was modeled.
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Table 2: Modeled and Measured Firing Rates (spikes per second).

A.Model B. Experiment
Period Best Mid Worst Best Mid Worst
Peak 187.3 136.8 36.3 115.8 82.4 512
First 100 ms 94.6 59.8 17.1 66.1 43.6 243
Second 100 ms 827 34.1 12.0 45.1 31.8 16.0
Fifth 100 ms 329 144 96 27.7 19.7 13.1

Source: Oram & Perrett, 1992.

N
[=]
1

INCREMENT IN LATENCY(ms)
o

0 ‘r ] 1
Best Mid Worst
RESPONSE CATEGORY

Figure 6: Increment in mean response latency versus the response category.
Stimuli of the Best category fire cells at the greatest mean rate during the post-
stimulus period of 250 ms, and those of the Worst category fire cells at the
smallest mean rate. Open circles indicate data of the model simulation, and
filled circles indicate the empirical data of Oram and Perrett (1992).

Weaker responses occur in longer latencies for both the model simulation
and experiment. The mean response latency of cells of the monkey was
111.2 ms for the Best response category. Assuming that visual signals took
70 (111.2 — 41.2) ms to reach area V1, Figure 6 shows that response latencies
of the model STPa are in good accordance with those of the monkey STPa.

!

5.1 Population Response. The amplitude-normalized responses (S/A,
0%; Peak from Best, 100%) were averaged by response category to produce
the population PSTH profiles (see Figure 7A). They reproduce those of the
experiment (see Figure 7B).Although the firing rates of model cells tend to
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Figure 7: Cell population responses and discrimination between the responses.
(A, B) PSTH response profiles in the model simulation and in the experiment
(Oram & Perrett, 1992). Clear bars show the Best category, hatched bars show the
Mid category, and solid bars show the Worst category. Firing rate is expressed as
a percentage of peak response in the Best category. (C, D) The results of statistical
evaluation of response discrimination in the simulation and the experiment: F-
ratio computed for each time bin across the three categories. Discrimination
reaches significance (P < 0.05) 45 ms after stimulus onset (activation of V1) in
the simulation and 116 ms after stimulus onset (presentation of visual stimuli)
in the experiment.

be higher than those of the monkey (see Table 2), the simulation results are
fairly close to the empirical data.

A two-way ANOVA (fixed factor, response category; random factor, the
50 cells) was performed between the three response categories for each of
the 120 time bins. Values of the F-ratio are plotted against time in Figurg ZC.
The discrimination between stimuli reaches a statistically significant level
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45 ms after stimulus onset (activation of V1) and is very reliable, as in the
experiment (see Figure 7D). The mean response latency after stimulus onset
of the selected cells is 37.6 ms. In the experiment, the time needed for the
discrimination measure to reach a significant level was 116 ms, and the re-
sponse latency was 90 ms. Note that stimuli in the experiment were stimuli
to the retina and that those times should therefore be longer in the empirical
data than in the simulation. Significant discrimination in the model simu-
lation occurred 7.4 ms after response onset and in the experiment 26 ms.

=

5.2 Average Cell Response. Some cells did not have a clear response
onset for some categories. Nineteen cells had the defined response onset
for all the response categories 20 ms after stimulus onset. Responses of
those cells were synchronized at 20 ms after stimulus onset. That is, cell
responses of the three categories were shifted by the difference between the
cell’s estimated response latency and 20 ms of poststimulus time. For those
19 cells, PSTH profiles were calculated after the synchronization of response
onsets (see Figure 8A). The synchronization makes the Best, Mid; and Worst
responses begin at the same latency, though responses of different categories
could occur at different latency for each cell.

* Discrimination between stimuli was again analyzed by ANOVA of: flrmg
rate in different time bins across the 19 cells. Changes in the F-ratio values
with time are shown in Figure 8C. The discrimination reaches a statistically
significant level within the first 5 ms of response onset, as it does in the
empirical data (see Figure 8D).

oD

5.3 Concurrent Cell Response.~For each of five trials, the concurrent
responses of the cells were averaged within each response category (see
Figure 9A). Responses of the Best category rose first every trial. They were
followed by responses of the Mid category. Some trials did not produce
clear responses of the Worst category. All the responses were considerably
oscillatory, and cells of the same response categories fired synchronously.
This would correspond to the synfire patterns proposed by Abeles (Abeles
etal., 1993). The oscillation did not appear in the population PSTH profiles
because the responses there were averaged across the trials.

Discrimination among responses of the Best, Mid, and Worst categories
was analyzed by ANOVA of firing rate in different time bins. The statistical
evaluation is illustrated in Figure 9B. Statistically significant discrimination
(p < 0.005) occurred at 50 ms for all the five trials, and the timing agreed
with the onsets of the concurrent responses for the Best category.

o @&

5.4 Reinforcementof Synaptic Connectivity. Incrementsintheaverage
synaptic efficacy were calculated after the learning period and after the
first half of the learning period. Eigure 10 shows the values of connections
between neuronal populations in the second rows of the population matrices
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Figure 8: Average cell responses and discrimination between the responses. (A,
B) PSTH response profiles in the model simulation and in the experiment (Oram
& Perrett, 1992). Response latencies of contributing cells were synchronized to
20 ms (poststimulus). Best, Mid, and Worst categories are, respectively, denoted
by clear, hatched, and solid bars. (C, D) The results of statistical evaluation of
response discrimination in the simulation and the experiment: F-ratio computed
for each time bin across the three categories. Discrimination reaches significance
(P < 0.05) within 5 ms of response onset in both the simulation and the experi-
ment.

¥

of cortical areas. Dashed arrows indicate connections whose increments in
average synaptic efficacy were between 3% and 30% of their initial values.
Solid arrows indicate connections whose average synaptic efficacy increased
by more than 30% of the initial values. As learning proceeded, pathways of
reinforced connections extended from area V1 to area STPa.

‘\o\ \D“‘
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Figure 9: Average concurrent responses of multiple cells and discrimination
between responses. (A) Responses averaged across 50 cells for five trials. Clear
bars show the Best category, hatched bars show the Mid category, and solid
bars show the Worst category. Firing rate is expressed as a percentage of peak
response in the Best category (300 spikes/s). (B) Statistical evaluation of response
discrimination: F-ratio computed for each time bin across the three categories.
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Figure 10: Reinforcement of corticocortical connections. Increments in the av-
erage synaptic efficacy after the first (A) and second (B) halves of the learning
period. Circles represent neuronal populations of the second rows in the pop-
ulation matrices of cortical areas. Dashed arrows indicate connections whose
increment in average synaptic efficacy was between 3% and 30% of their ini-
tial values. Solid arrows indicate connections whose average synapyic efficacy
increased by more than 30% of the initial values.

6 Discussion

6.1 Latency and Response Discrimination. The mechanism of latency
competition transmits the strongest activation first, so strong responses
should occur at short latency. Unless the latency of strong responses is
shorter, the hypothesis presented here does not hold. This requirement was
verified in both the simulation results and the empirical data (see Figure 6).
Differences of latency between response categories in the simulation were
close to those in the empirical data. This suggests that the number of synap-
tic relays in the shortest pathways for the discrimination in the monkey
STPa is nearly the same as that in the model circuit and therefore that the
pathways of the monkey might be included in the ventral pathway of the
temporal lobe of the model cortex.
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Oram and Perrett (1992) calculated a measure of discrimination between
the Best and Worst categories. The discrimination was expressed as 100 x
(R — Rw)/Rg, where Rg and Ry are the mean firing rate levels above S/A
in the Best and Worst categories during the first 100 ms of the response after
the estimated cell response latency. They found no correlation between the
discrimination measure and cell’s response latency. The reason might be that
the cell’s response latency principally depends on the length of pathways
transmitting the first spikes and is not related to the above discrimination
measure. Instead, our model predicts that for each cell, responses of the Best
category should come earlier than those of the other categories, no matter
how long the cell’s response latency is. This was verified by the data shown
in Figure 6.

6.2 Robustness of Populational Behavior Against Noise. Neural mech-
anisms must work well in the noisy environment of the brain. Our model
assumes that cortical circuits encode information in firing ratios of neuronal
populations. The simulation has shown that in all the trials, the average
concurrent response of neuronal populations began at the shortest latency
to stimuli of the Best response category even though spontaneous activity
(9 Hz) provided random spikes (see Figure 9A). This enables the mechanism
of latency competition to work under the random spontaneous activity. In
every trial, discrimination between stimuli of the three response categories
reached a statistically significant level within 5 ms of response onset (see
Figure 9B).

6.3 Robustness Against Latency Variability of Input Signals. The
mechanism of latency competition may be suspected not to work correctly
if input activations start after different latencies. The firing latency of retinal
ganglion cells varied up to 30 ms with changes in contrast. Robustness of the
latency competition against this variability was examined for two typical
cases. The first is that every neuronal population of area V1 receives pro-
jections from cells with different firing latencies. Figures 11A and B show a
result of simulation, where the circuit of Figure 1B receives inputs, each of
which is produced by 100 cells with different firing latencies. The latencies of
the first spikes distribute in a gaussian fashion: mean £ SD = 1545 ms. Fir-
ing ratios of afferents increase not stepwise but gradually (see Figure 11A).
Even in response to gradually rising inputs, the circuit allowed only the
most strongly activated populations to fire (see Figure 11B). That is, the
latency competition correctly detected the strongest activations.

-y The second case is that each population of area V1 receives projections

from cells of the same latency and the latency varies from population to
population. Neuronal populations of area V1 receive stepwise inputs of dif-
ferent latencies (see Figure,11C). If strong inputs start early, they certainly
win the latency competition. The simulation investigated the opposite case:
Weak inputs start early. In the simulation, every interval between input on-
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Figure 11: Robustness of latency competition against input latency variability.
The abscissa and the ordinate, respectively, indicate time and the ratios of firing
neurons in the populations. (A) Input activations, each of which is produced by
100 cells with different firing latencies. Mean firing ratio tends to 0.05 for the
bottom row, and limit values increase to 0.25 for the top row. (B) Responses of the
circuit of cortical area shown in Figure 1B to inputs of A. (C) Input activations,
each of which is produced by 100 cells with the same firing latency. The latency
is the shortest for the bottom row, increases by 7 ms, and is the longest for the
top row. Firing ratio is 0.05 for the bottom row and increases to 0.25 for the top
row. (D) Responses of the circuit of cortical area shown in Figure 1B to inputs
of C. Duration of inhibition is 4 ms. (E) Responses of the circuit of cortical area
shown in Figure 1B to inputs of C. Duration of inhibition is 25 ms.

4

sets was 7 ms, and the weakest input began 28 ms earlier than the strongest
input. Figure 11D shows the responses. The weakest input was too weak
to fire any cell. The second and third weakest inputs activated some cells
and laterally inhibited all the populations. At release from the inhibition,
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the fourth weakest (second strongest) input had begun, and the four inputs
competed. The two strongest excited their target populations and again in-
hibited all the populations. When the second inhibition ended, the strongest
input had been on, and all the inputs participated in the competition. The
result was that the two strongest inputs produced oscillatory responses. As
above, the latency competition resulted in the same response that was pro-
duced by simultaneous inputs after all the inputs had been on. In the early
stage, weaker inputs fired some cells. The irrelevant response would be re-
duced, however, if the inhibition were of long duration. If the oscillation of
40 Hz at area V1 was produced by lateral inhibition, its estimated duration
would be 25 ms. Figure 11E shows a simulation result where inhibition lasts
25 ms. Although small, irrelevant responses were made in the first competi-
tion, the circuit correctly detected the strongest activations after the second
competition. We see that except in the first competition, the latency compe-
¢ tition makes relevant Tesponses even to inputs with an onset variability of

4+ = nearly 30 ms.

C? X Inthe discussion, input activations were not oscillatory. This is plausible
for inputs to area’ V1, but activation of the subsequent areas may be oscil-
latory. We will see here that neuronal populations receive nonoscillatory
inputs even if neuronal populations of the preceding area deliver oscilla-
tory activations. Every neuronal population receives projections from many
populations in the preceding area (see Figure 12A). Therefore, the activation
the population receives is a superposition of activations from the multiple
populations. Suppose each of the activations is oscillatory. Intervals of the
oscillation are determined by the’interval of inhibition. If we assume that
the interval differs in the inhibitory neuronal populations, the superposi-
tion of oscillatory activations becomes less oscillatory. Figure 12B shows a
superposition of three oscillatory activations. It is less oscillatory than the

(\Doriginal three. A superposition of more activations is expected to be close
to a step input.

The discussion also suggests a possible way of integrating signals con-
veyed by different pathways. The signals could arrive after different laten-
cies at areas where they are integrated. For example, auditory signals arrive
at the STS cells about 100 ms earlier than visual signals (Bruce, Desimone,
& Gross, 1981). Despite the latency difference, animals can integrate those
signals to respond in a few hundred milliseconds. Suppose that a cortical
area receives input along two cortical pathways (see Figure 12C) and that
the first pathway delivers activation earlier than the second pathway. Also
assume that the first pathway activates the two neuronal populations more
strongly than the other three populations, but activation of both the path-
ways provides more synaptic input to the latter three populations than to
the former two. Figure 12D shows the behavior of the model cortical area.
The responses of the former and the latter populations are, respectively,
shown in the top two rows and the bottom three rows. Before activation
of the second pathway, the two neuronal populations strongly activated by

Copyrlght © 2001 AII nghts Reserved



Neural Processing in the Subsecond Time Range 589

A
Cortical area Cortical area
- 1 Population 1
Population ( 0 LI_J.A_A_,A._M_A_M.,__L._.,
: :
J‘ < 1 Poputation 2
H \ H g 0 L—LAMM—MH
Population hood, ! £ ] Population 3
2 1 3 0

==

Superposition of 3 inputs

Population Y} ! L
3 ) 0+
0 TME(ms) 100
C
Pathway 1 Cortical area
’7 D
v v /

orece

—% = ]
FIRING RATIO
-

O -

TIME (ms)

-

BB
=9

Figure 12: Integration of signals from different cortical pathways. (A) Cortico-
cortical connections in a single pathway. Three activated neuronal populations
project to stellate cells of a population in the next area. (B) Oscillatory activations
of the three corticocortical projections in A (top three rows) and the superposi-
tion of them (bottom row). The refractory periods of inhibitory neurons in the
model cortical areas differ from neuron to neuron; the distribution of lengths
of the refractory periods is gaussian (mean + SD = 10.0 + 3.33 ms). (C) Two
cortical pathways converging at a cortical area. The first pathway activates the
two neuronal populations more strongly than the other three populations, but
activation of both the pathways provides more synaptic input to the latter three
populations than to the former two. (D) Responses of neuronal populations of a
cortical area that receives activations of two pathiways at different onset times.
Open and solid triangles, respectively, indicate onset times of activations of the
first and the second pathways. The responses of the populations strongly acti-
vated by the first pathway are shown in the top two rows, and the responses
of the populations strongly activated under activation of both the pathways are
shown in the bottom three rows.
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the first pathway won the competition and made oscillatory responses. Af-
ter the second pathway also began to fire, the other three populations won
the competition and produced oscillatory firing. Again, the mechanism of
latency competition correctly detected the strong activation from the in-
tegrated signals, except in the first few competitions. If the motor system
needs to accumulate some neural activation in order to move, irrelevant
responses of the first competitions could be neglected, and relevant motor
response would be made.

From the above consideration, we see that the latency competition is
not only performed by the first spikes but is repeated in oscillation by the
subsequent spikes. This makes the competition mechanism robust against
some latency variability of neural inputs.

6.4 Feedback Connections. There are many feedback connections in the
cortical circuitry, though the model presented here does not include them.
This study focused on processing of the millisecond time range, which bi-
ological time constraints suggest should be performed without using feed-
back connections (Oram & Perrett, 1994). They might, however, accelerate
processing. Auditory signals activate cells of the STS earlier than visual sig-
nals, and feedback connections could transmit the activation to earlier stages
of visual pathways such as the AIT and MST. This might increase the ex-
citability of those areas and make them respond faster to visual stimuli. It is
expected that feedback connections play different roles in different aspects
of cortical processing. How the mechanism of latency competition might
cooperate with other cortical mechanisms is an issue for future research.

Appendix A

Suppose x(t) = xg fort < 0Oand x(t) = xfort > 0. Let A(x()) = i (Wex(H+
1)GE/Cand V(x(t)) = Y (Wix(t) + 1)GREx/(CA(x(#))). Assuming V is con-
stant for t < 0, we obtain from equation 2.1

_JV(x0) ift<0
V= [V(x) + (Vo) = V() exp(—AH) if £ > 0 A1)

Let Ty be a time interval required for the neuron to fire the first time. Since
the synaptic input is excitatory, V(x) > h. Setting V = h in equation A.1
yields

V() = Vixo)

To = A(¥) " llog Voo —h

(A2)

Let T be the time intervals required to fire after the first firing. It is given by

Vx) -V,

T= A(X)_l log m

(A3)
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It follows that the uth firing begins at
tu=To+U—-D++T), u=12,... (A4)

Suppose that the neuron is producing the uth spike at time ¢; that is, #, < ¢
and t, > max[0,t — ;). Equations A2, A.3, and A4 indicate that ¢, is a
function of (Wj). Condition 1 reduces }_; Wix(t) to Wi x(¥) in V(x(#)) and
A(x(1)). It follows that t, depends only on Wy, among W;. By counting
neurons that are producing the uth spikes at time ¢, we can calculate the
ratio of firing neurons in the population, which is denoted by y(#):

He—1

yi =Y

f fWi)dW,,
u=1 v Wi, €{Wy, Ity <t,t,>t—1}

+f FON AW, (A5)
Wi, €{Wi, Ity <t.tu, >max[0,t—1,]}

where f(Wy,) denotes the probability density of neurons receiving con-
nections with coefficient Wy, in the populations, and #, is the maximum
integer not more than t/(t, 4+ 1,4+ T) + 1. Let y1 () and f; (Wi ) denote values
of y(t) and f(W;,) when W, is larger by AW, . Condition 2 implies that
HWi,) = f(Wi, — AWL). Assuming that AW, is small, we have

- dy(t)
yi(t) = y(t) — AW, m; -
dy(t) dt dt
=yt - aw, ZO 2L S (A6)

dt dt, dea )

Let us define the response latency of neuronal populations, which is denoted
by t], as the time when the value of y(t) reaches a certain value y* for the
first time. Since y(t) is not decreasing at ], dy(t)/dt > 0 at t. dt/dt, = 1.
From equation A 4, dt, /AWy, = dTo/dWi, + (u — 1)dT/dWj,.

dlo -1 [Gph—V(x0)(E, ~ V()
AWy, ~ GL A2 | CVG) — Vo)) (VGO - b)
Gy, AW(E, —Vx)  Gp . V(x) - Vixo)

CA(xp) V(x)—V(xo) tC Iogm—]. (A7)

Since the afferents are excitatory, Ex, > V(x) > h > V(xp). It follows from
equation A.7 that dTo/dWy, < 0. Similarly, dT/dW), < 0 because V(xp) >
Vo. From these, we have dt, /dWi, < 0. It follows from equation A.6 that
y1(t) = y(#}). Consequently, the value of y; () reaches y* not later than ¢].
Let t; denote the time when the value of y;(t) reaches y* for the first time.
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t3 < 1. Let y2(t) and f2(Wy,) denote values of y(¥) and f(W;,) when Wi,
is larger by 2AW,, . The same consideration results in y;(#) reaching y* not
later than £} and so not later than #}. Similarly, whenever W, is larger by
any value, the value of y(f) with the larger Wj, reaches y* not later than #].

Appendix B

Theorem 1 ensures that neuronal populations receiving the strongest acti-
vation produce spikes first. The first spikes excite the inhibitory interneu-
rons if Wy, of the connections with the inhibitory neurons is larger than
the following value. Consider the weakest activation, that is, that only
one spike is delivered. Then input x = 1/n, where n denotes the num-
ber of neurons of the projecting population. If T given by equation A.3 is
shorter than spike duration 7;, the neuron is certain to fire. Let T(1/n) =
AQ/n)log[V(1/n) — Vol/[V(1/n) — h]. T(1/n) decreases as W, increases
(see appendix A). It follows that there is some value of Wy, that makes
T(1/n) = ts. If Wy, is larger than that value, the inhibitory neuron is cer-
tain to fire. If the input stays larger than x for a period of 7, the condition
T(1/n) = 1, is replaced by T(x) = ..

Assume the inhibitory spikes act only on the k;th ion conductance of pyra-
midal cells. This appendix will show that firing of the inhibitory neurons
reduces the membrane potential of pyramidal cells close to the inhibitory
electromotive force Ex, (<V),) if the inhibitory connections are strong enough.
Suppose only one inhibitory neuron fires, and assume that inhibitory neu-
rons produce a train of spikes every time they fire (Kawaguchi, 1995). Let
n; and 7, respectively, be the number of spikes in single trains and an in-
terval between spike discharges. Then the strength of inhibitory input is
1/n, during spikes and 0 between spikes, where 1, denotes the number of
inhibitory neurons in the population. Let &%, denote the maximum strength
of excitatory input x;, during the inhibition. It follows from equation A.1
that the value of V at the end of the first spike, which is denoted by V1, is
in the range defined by

Vi < V(&,, 1/n)(A — exp(=A@y,, 1/1,)15))
+ V3 exp(=AGx,. 1/m)), (B.1)
where V(%,,1/n,) and A(Zy,, 1/n;), respectively, denote Y, (Wixx + 1)G}
Ex/(CA(xy,, xx)) and 3 (Wixi + 1)G}/C, where x, = %, xi, = 1/n,, and

xi = 0 for the other k, and where V; denotes the value of V at the onset of
the first spike:

b

dv _ Gz‘ (Ex, — V(fkay 1/n,)) n
W, = mCAGL. /m) (1 — exp(—AQ(x,, 1/1)7))

+ (V(&,, 1/n) — Vl)(Gz,/"zC)A(fk,,, 1/n;)

X s exp(—Ax,, 1/1) 7). (B.2)
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The k;th input being inhibitory means that V(%,, 1/n,) decreases to Ej, as
Wi, increases and therefore Ey, < V(¥ 1/n)). If Vi > Ei, there is some
value of Wy, such that V(%,, 1/n;) < V7. It follows from these that there is
some value of Wy, such that dV;/dW;, < 0. Consequently, if Wy, is above
that value, V1 decreases as Wy, increases. Let V3 denote the value of V at the
onset of the second spike. From equation A.1, we have

Vi < V(,, 0) + (V1 ~ V(,, 0) exp(—A(i,, 0)(z, — 7). (B.3)

Only V7 depends on Wy, in equation B.3 and decreases as W, increases.
There is some value of Wy, such that V5 < V7. The value ensures that the
neuron never fires before the onset of the second spike. Similarly, let V; and
V7, respectively, denote the values of V at the ends and the onsets of the jth
spikes, j = 1,2,..., n;. There are some values of Wy, such that V; decreases as
Wy, increases and V, > V21 And from equation B.1, we know that V; tends
to Ej, as W, increases. It follows that there is some value of Wy, such that the
neuron does not fire during the spike trainand V,,, is close to Ey (< V,). From
the assumption that the length of the spike trains, 1 x 7, + 75, is longer than
the refractory period of pyramidal cells, 7., it follows that at release from the
inhibition, pyramidal cells that produced spikes have recovered from the
refractory state. Since those cells receive inhibition after the recovery, their
membrane potentials are not more than the resting potential V,. And they
are larger than those of the unfired cells because the fired cells are assumed to
neglect any input (including inhibitory input) during the refractory period
and so do not receive inhibition any longer than the unfired cells. After
release from the inhibition, the second competition takes place, in which
the previously fired cells fire more quickly than the previously unfired cells.
Again, only the most strongly activated populations are fired.

Appendix C

The model neuron is assumed to have Na*, K*, and Cl~ channels. Values
of G? are 0.888888 (MQ2cm?)~! for Na*, 44.4444 (MQcm?)™! for K+, and
154.666 (MQcm?)~! for C1~. Values of Ej are 60.0 mV for Na*, ~90.0 mV
for K*, and —65.0 mV for CI~. The initial threshold potential for firing,
ho, is —40.0 mV. Ay = 0.1 mV/spike. C;, = 6.0 x 1074, V, = —70.0 mV.
C = 1.0uF. 1; = 1.0 ms. At every firing, excitatory neurons produce a single
spike, and inhibitory neurons produce a train of spikes (three spikes in this
simulation). The interspike interval in the train is 1.5 ms. t, = 4.0 ms for
excitatory neurons, and the 7, of inhibitory neurons varies with a normal
distribution, from neuron to neuron. The mean is 10.0 ms, and the standard
deviation (SD) is one-third of the mean. The probability that the variable
is below the mean —3 x SD is 0.2% and each neuronal population has 100
neurons. It follows that the neuronal populations rarely include neurons
with negative 1,.
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Synaptic efficacy should differ from neuron to neuron, so values of Wy
were assumed to be normally distributed. The mean values were chosen so
that neurons may fire at physiologically plausible rates. The means were
2500 for projections of stellate cells to pyramidal cells and for projections of
pyramidal cells to inhibitory cells. The projections with synaptic efficacy of
those mean values fire about 3% of the neurons in their target populations
when the projections are activated at the ratio of x(f) = 0.03. Lateral con-
nections of inhibitory neurons diverge exponentially. Means of W, decline
ata rate of exp(C; (l,zc +12)) where C, is a coefficient, I, is the distance between
the projecting population and target population on the x-axis, and , is that
distance on the y-axis. The mean of Wi of the lateral connections is 2 at
L =y =0and C; = 0.5. Corticocortical connections between areas were
initially so weak that no cortical cells might respond to any activation of
area V1. They also diverge exponentially, at a rate given by exp(Cc(2 + 1)),
where C, = 1.0 and the mean of W;, of the corticocortical connections is 250
atly = I, = 0.Projections to area V1 are strong enough to fire stellate cells of
area V1: the means of Wj, are 3000, and all SDs are one-third of the means.

. Wy are two times as large as the means. The time needed for spikes to travel
along the connections is 0.2 ms inside the cortical areas, 6.0 ms between the
sequential cortical areas, and 9.0 ms along the shortcut connections.

The coefficient of reinforcement C, = 10.0 and the coefficient of decay
C4 = 2.43 x 105, The upper limit of synaptic efficacy Wy is twice the initial
mean value.
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Communicated by Sebastian Seung and Miguel Nicolelis

Temporal-Code to Rate-Code Conversion by Neuronal
Phase-Locked Loops

Ehud Ahissar
Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel

Peripheral sensory activity follows the temporal structure of input sig-
nals. Central sensory processing uses also rate coding, and motor outputs
appear to be primarily encoded by rate. I propose here a simple, efficient
structure, converting temporal coding to rate coding by neuronal phase-
locked loops (PLL). The simplest form of a PLL includes a phase detector
(thatis, aneuronal-plausible version of an ideal coincidence detector) and
a controllable local oscillator that are connected in a negative feedback
loop. The phase detector compares the firing times of the local oscillator
and the input and provides an output whose firing rate is monotonically
related to the time difference. The output rate is fed back to the local oscil-
lator and forces it to phase-lock to the input. Every temporal interval at the
input is associated with a specific pair of output rate and time difference
values; the higher the output rate, the further the local oscillator is driven

from its intrinsic frequency. Sequences of input intervals, which by def-
inition encode input information, are thus represented by sequences of

firing rates at the PLL’s output. The most plausible implementation of PLL
circuits is by thalamocortical loops in which populations of thalamic “re-
lay” neurons function as phase detectors that compare the timings of cor-
tical oscillators and sensory signals. The output in this case is encoded by
the thalamic population rate. This article presents and analyzes the algo-
rithmic and the implementation levels of the proposed PLL model and de-
scribes the implementation of the PLL model to the primate tactile system.

1 Introduction

The distinction between rate and temporal coding is not always clear (The-
unissen & Miller, 1995). For example, temporal coding is sometimes re-
garded as rate coding with a fine time resolution. In this article, temporal
coding will refer to coding in which the exact time of every spike is infor-
mative. Rate coding will be associated here with a temporal window, the
rate bin, within which the exact temporal information is not informative
and the information is carried by the average firing rate over the entire tem-
poral window. The rate bin is usually determined by the integration times
of the readout mechanisms. A rate encoded signal can thus be described by
a series of numbers, each of which represents the average firing rate in a

Neural Computation 10, 597-650 (1998)  © 1998 Massachusetts Institute of Technology
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single rate bin (see appendix A.1). Fluctuations in the average firing rate of
a neuron over different rate bins are considered here as fluctuations of rate-
encoded information, and not as temporal coding, as has been considered
previously (Richmond & Optican, 1987). A temporally encoded signal is
described by a series of numbers, each of which represents either the timing
of a single spike or a single interspike interval (IS[; see appendix A.1). The
information contained in the spiking times can be presented in different
ways; two of them are depicted in Figure 1: M(n) describes the deviations
of the actual train from an imaginary, ideally periodic, “carrier” train and
I(n) describes the ISIs. Figure 1 also demonstrates the distinction between
temporal and rate coding; the spike train in this example carries a significant
amount of information if a temporal coding is assumed (see Figure 1a), but
almost no information if a rate coding with a particular rate bin is assumed
(see Figure 1b). Practically, this distinction is important for reading out the
information of the spike train. A readout mechanism based on rate will
lose more and more information as its integration time increases. To read
out temporally encoded information, a rate-based mechanism needs to em-
ploy integration times shorter than half of the input temporal resolution,
an implementation that is both nonefficient and, with fine input resolution,
not practical for neurons. The other alternative is to utilize preprocessing
by time-sensitive mechanisms—mechanisms that produce populations of
spikes, where the number of spikes in a population directly represents the
ISI at the input and the exact times of these output spikes is not important.
¥ Another important distinction is between peripheral and central tem-
poral encodings (Perkel & Bullock, 1968). When a stimulus is temporally
encoded at the periphery, the peripheral ISIs directly describe stimulus fea-
tures such as spatial periods (Darian-Smith & Oke, 1980) whereas when
stimuli are temporally encoded centrally, the centrally generated temporal
structures are usually not directly related to the stimulus (Engel, Konig, Kre-
iter, Schillen, & Singer, 1992; Abeles, Bergman, Margalit, & Vaadia, 1993).
This article deals with central decoding of peripherally generated temporal
encodings. Using the term decoding in neuronal contexts should not im-
ply that the original signals are reconstructed, but rather that the encoded
information is extracted (Perkel & Bullock, 1968).

In mammals, sensory information is encoded by both rate and temporal
coding (Sejnowski, 1995; Carr, 1993; Middlebrooks & Green, 1991; Wang,
Merzenich, Beitel, & Schreiner, 1995; Johansson & Vallbo, 1983; Berkley,
1978). Whereas spatial static information is usually encoded by rate, dy-
namic information, generated during movements of either the stimulus or
the sensory organ, is encoded also by temporal cues (see, for example, en-
coding of spatial intervals by ISIs of tactile [Darian-Smith & Oke, 1980]
and visual {Shadlen & Newsome, 1994] neurons). In contrast, motor con-
trol is assumed to utilize rate coding predominantly (Georgopoulos, 1986;
Fetz, 1993; Wise, 1993), even at the early stage of motor planning (Bous-
saoud & Wise, 1993). Thus, information carried by the sensory temporal
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Figure1: Encodingby spike trains. (a) Temporal encoding. Two possible presen-
tations of the information contained in the spiking times: a series of ISIs [I(1)]
and a series of absolute modulations [M(n)]. M(n) is the difference between
the actual timing of the nth spike and the timing expected by an imaginary,
ideally periodic, “carriér” train that has the same average periodicity and no
modulation (see appendix Al). (b) Rate encoding. The spike train is divided into
several rate bins (four in this case), and the total number of spikes in each bin
determines the value of the rate function r(#) for that bin. Insets: S(#), a spike
triggered at ¥ = 0; R(t), a step function with a unity gain and a duration of a
rate bin, T,.

components is probably translated, by neuronal circuits in the brain, to
rate-encoded signals that are “readable” by the motor system. If such a
translation occurs early in a sensory pathway, the translation would also
facilitate integration of temporally encoded information with other, rate-
encoded sensory information. This necessity for translation was elegantly
demonstrated by Mountcastle and his colleagues (Talbot, Darian-Smith, Ko-
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rnhuber, & Mountcastle, 1968; Mountcastle, 1993) over the past few decades.

A mechanism that utilizes neuronal delay lines to transform temporal
coding to rate coding has been suggested by Jeffress (1948). Such delay
lines exist in the electric sensory system of electric fishes and in the subcor-
tical auditory systems of birds and mammals (reviewed in Carr, 1993). These
delay lines are probably utilized to decode temporal disparities, which in
the submillisecond and low millisecond ranges can determine interaural
time differences and echo delays, respectively. As the delay increases above
a few hundred microseconds, implementations of delay lines require mul-
tiple neuronal elements, and the accuracy decreases (Carr, 1993). A mech-
anism that uses synaptic time constants appears more suitable to decode
temporally encoded information in the millisecond range (Buanomuno &
Merzenich, 1995). Both of these mechanisms describe “passive,” open-loop
decoding schemes that are based on classification of different ISIs according
to their interaction with predetermined neuronal temporal features. In this
article, I suggest an “active,” closed-loop decoding mechanism, which dy-
namically adapts its working parameters to match the incoming signal. This
phase-locked loop (PLL) model is based on a local oscillator “measuring”
the instantaneous temporal period of the input by comparing it to its own
period. During decoding, the local oscillator updates its period according
to the result of the comparison, such that it remains tuned to the changing
input. The PLL is a well-known mechanism in electrical engineering where
it is often used for the decoding of phase-modulated signals. The algorithm
presented here was adopted from that of continuous-time electronic PLLs
(Gardner, 1979) and modified to fit discrete-time neuronal PLLs. This ap-
proach uses a small neuronal network as a PLL, unlike a previous approach
that described a single-neuron as a PLL (Hoppensteadt, 1986).

Neuronal PLLs appear suitable to decode temporally encoded informa-
tion in the range of a few to a few hundred milliseconds. However, decoding
by a single neuronal PLL is usually limited to phase modulations that are
in the order of its intrinsic period. Thus, decoding in different frequency
ranges requires different PLL circuits, and decoding of large modulations
requires an ensemble of several PLLs. In this article, the mechanism of a
single PLL is described in detail, whereas only the principles of operation
are described for the postulated ensemble.

Depending on the parameters of a stimulus, sensory firing could engage
different temporal forms. For example, the peripheral tactile response to a
moving grating can be one spike per bar or aburst of a variable length per bar
(Darian-Smith & Oke, 1980; Morley and Goodwin, 1987). For clarity, simple
temporal forms will be assumed here. Sensory firing with bursts does not
affect the principles of decoding described here (S. Serulnik and E. Ahissar,
unpublished observations), although it affects the decoding details.
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2 The PLL Model

2.1 ThePLL Algorithm. The simplest version of a first-order PLL (Gard-
net, 1979) is adopted here. A first-order neuronal PLL is composed of two
elements (see Figure 2a): a phase detector (PD) and a rate-controlled os-
cillator (RCO). The RCO is a local oscillator whose output frequency, and
thus the timing of its output spikes, is controlled by the firing rate of its
input. If the input is zero, the RCO will fire at its intrinsic frequency. The
more excitatory the input, the higher the RCO’s output frequency, and the
more inhibitory the input, the lower is the RCO’s frequency. The PD com-
pares the phase—the time of arrival—of each of the spikes of a repetitive
input against the phase of the RCO spikes and produces an output that is
a “measure” of (i.e, its firing rate is proportional to) that phase difference.
The RCO can be regarded as a rate-to-temporal code converter and the PD
as a temporal-to-rate converter. The PD’s output (R;) is fed into the RCO’s
input and changes the RCO’s firing phase in the direction that will can-
cel the phase difference (in fact, cancel any deviation from some constant
phase difference), establishing a negative feedback loop (see section A.2).
Note that in the following description phase difference and temporal difference
are interchangeable terms, both expressed in time units.

" The PLL is considered locked when the RCO’s instantaneous frequency
equals the input’s instantaneous frequency. The phase difference, in the
locked state, depends on the difference between the input frequency and the
RCO'’s intrinsic frequency (see appendices A.3 and A.4). While locked, the
RCO generates one and only one oscillation cycle for each input cycle. For
simplicity, assume that a single spike represents a single cycle, even though
a short burst or an ensemble of single spikes over a cell population is also
possible. In the absence of noise and with ideal PLLs (see appendix A.3),
the RCO's output spike train is a perfect replica of the input spike train, but
with a delay of one cycle plus a constant phase shift. This is because, with
ideal PLLs, any deviation of the input from the expected ISL is followed by
an identical deviation of the RCO's ISI at the next cycle. )

The decoding (or recoding) of the input information is based on the de-
layed internal replica of the input spike train. As long as the PLL is locked,
the RCO’s ISI has to be modulated by the same information that modulates
the input ISI. Thus, the input information is represented by the rate-encoded
signal that drives the RCO (see appendix A 4). This signal is the PLL’s out-
put. The same decoding mechanism can be described differently, at least for
ideal PLLs: every input ISI is “stored” as the next RCO’s ISL. Thus, at each
cycle, aninputISTis compared with the input’s previous ISI, and the change,
which is the encoded information, is detected by the PD and presented as a
rate-encoded signal (see appendix A.4). While the PD’s (=PLL’s) output is
affecting the RCO at every cycle, it can be integrated over several cycles by
a potential readout mechanism. The readout integration time, or rate bin,
determines the maximal rate of information that can be represented inter-
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Figure 2: The first-order neuronal PLL algorithm. (a) Schematic diagram. The
output of the phase detector (PD) is proportional to the difference between the
timing of its two inputs. The output frequency of the rate-controlled oscillator
(RCO) is modulated by the firing rate of its input (see loop equations at bottom
and appendix A.2). (b) Schematic examples of transfer functions. For every
I, within the working range, Rs(n + 1) increases as a function of the timing
difference [1,() — 1,(n)] and the timing difference decreases, via decrement of
I,(n), and thus of 7,(n), as a function of Ry(n). The crossing (working) point is
approximately (exactly for linear systems) at (A&, Ra).

nally; higher rates require shorter integration periods. Note that the phase
of the input is not lost but rather preserved by the firing phase of the PLL's
output, which is phase locked to the input (see, for example, Figure 6b).
Thus, the output of the PLL is a rate-encoded signal proportional to the
" difference between the RCO’s intrinsic period and the input instantaneous
ISL. This signal can be decomposed to two components: a DC component
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(Rac), which represents the difference between tﬁe RCO’s intrinsic period
and the average input ISI, and an AC component (R,), which represents
the dynamic input information (see appendices A.2 and A 4). An ideal PLL
should be able to track any change in the input ISI within one cycle. Practi-
cal PLLs, however, are limited in both their working ranges—the ranges of
trackable input frequenaes (see appendix A.2.3}—and lock-in times—the
time required for moving into a new locked state. The lock-in dynamics,
which is mainly determined by the loop gain (see appendix A.2.3), limits
the maximal rate of change in the input frequency that a given PLL can track
and decode.’

PLLs of higher than first order have low-pass filters between the PD
and RCO. Such filters improve the loop performance, especially in noisy
conditions (Gardner, 1979; Viterbi, 1966). Low-pass filtering, also referred
to as input integration, is an elementary feature of nerve cells. It is assumed
that the RCO uses such filtering in its input stage. However, for simplicity,
higher-order circuits will not be discussed here, since the first-order version
is sufficient for code translation.

2.2 Implementations of PLLs. There are two main families of PLL im-
plementations: excitatory PLLs (ePLLs) are those implementations in which
the PD excites the RCO (see Fig. 3a, dashed lines), and inhibitory PLLs
(iPLLs) are those implementations in which the PD inhibits the RCO (see
Figure 3a, dotted lines). Here, only two specific implementations of these

families—the AND-like and NAND-like implementations—are described
in detail. Thus, ePLL will refer to an AND-like and iPLL to a NAND-like

implementation, unless otherwise noted. In the following descriptions, only
essential components are included, a case that probably does not occur in the
brain. The described implementations should thus be regarded as building
blocks that can be used separately or in combination in the brain. Accord-
ingly, the principles of, not the exact, operation of such hypothetical PLL
circuits are discussed.

\' Thebasic ePLL is a straightforward implementation of the PLL algorithm
(see Figure-2) and involves two sets of neurons: the PD and RCO sets (see
Figure 3a). The basic iPLL, in addition to these two sets of neurons, involves
a set of inhibitory cells (INH). In both ePLL and iPLL, every component is
implemented by a set of neurons similar to each other. These sets of neurons
are interconnected by “diverging/converging” pathways; every cell in the
projecting set sends axons to many cells in the target set, and every cell in
the target set receives synapses from many cells in the projecting set. The
set of RCOs of a given PLL is regarded as a set of coupled oscillators that
oscillate at the same frequency. The redundancy of the RCO and INH cells
has no specific role in the presented implementations beyond improving
robustness. However, the efficiency of phase detection by a PD composed
of a population of cells is significantly better than the efficiency of a single
coincidence detector. The number of coincidence-detecting neurons that
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Figure 3: Possible implementations of a single PLL. (a) Connection schemes.
For clarity, the width (w) was arbitrarily set at 7. Dotted lines indicate inhibitory
PLL (iPLL); dashed lines, excitatory PLL (ePLL); and INH, inhibitory neurons.
(b) Schematics of two possible PLL implementations where the PD operates in
an AND-like manner.

compose the PD set defines the “width” (w) of a single PLL. Arbitrarily, it is
assumed that the other neuronal sets (INH and RCO) have the same width.
A reasonable estimation for the minimal value of w can be derived from the
number of peripheral fibers activated by a “point” stimulus. In the tactile
case, for example, this number is around 20 (Johansson & Vallbo, 1980).
< \5‘5* 5
2.2.1 Implementations of PDs. . In principle, each neuron can operate as a
degenerated PD. When functioning as a “coincidence detector” (Goldberg
& Brown, 1969; Abeles, 1982), a cell will fire only if a certain number of its
inputs will be synchronously active—that is, a single neuron detects a zero-
or near-zero-phase difference among its inputs. Thus, to serve as a PD, the
neuron’s inputs should be predominantly organized into two groups, with

”
B

Copyrig[\t © 2001 All Rights Reserved



4

he ]

Code Conversion by Phase-Locked Loops 605

the inputs always being temporally coordinated within each group. The
neuron will function as an AND-like zero-phase detector if its threshold is
set such that neither of these two groups of inputs is able by itself to activate
the cell, but there is a high probability that synchronous operation of both
inputs will activate it. Coincidence detection, however, is not sufficient for a
PD. A usable PD should have a range within which its output is a monotonic
increasing or a monotonic decreasing function of the phase difference (see
appendix A .2).

2.2.1.1 Asingleneuron AND-like PD. The PD capacity of a single neuron
is due to the nonzero time constants of its inputs. If a neuron receives two
major inputs, the range of delays that it will be able to resolve (i.e., its
working range) will depend on the amplitude and time constants of the
two inputs. For example, suppose the excitatory postsynaptic potentials
(EPSPs) of both inputs, when measured at the axon hillock, exhibit short
rising times, long decays, and relatively strong amplitudes (see Figure 4a).
The longer the delay between the inputs—the phase difference—the shorter
the period in which the membrane potential will be above threshold, and
thus, the fewer the spikes that will be emitted. Thus, the output rate of
a single neuronal PD is generally a monotonic decreasing function of the
input phase difference.
HA_ ¥  For frequencies near 30 Hz, for example, the working range of an appro-
priately tuned neuron covers about half a cycle (see appendix A.5), which

is satisfactory for a PD (Gardner, 1979). However, the refractoriness of a
single neuron results in a poor output resolution—usually poorer than 2

ms. For example, tracking a frequency of 30 Hz with an error less than 1 Hz
requires the RCO to be informed about deviations as small as 1 ms in the
input spike train. A single neuron with a réfractory period of 2 ms or more
cannot provide this resolution. In addition, single-cell reliability is limited,
and noise will significantly influence the single neuron PD’s performance.

2.2.1.2 Apopulation AND-like PD. To increase a PD’s resolution, a num-
ber of single cells, say w, can be arranged in parallel such that all receive
the same input, but with different delays (see Figure 4h). Let Ty, denote
the effective width (see appendix A.5) of the RCO’s output and T, the ef-
fective width of the input. The most efficient phase detection occurs with
Two = Tuy. In this case, every phase difference between 0 and Ty, produces
a different population sum (see appendix A.1) at the PD's output. Since the
population sum is directly related to the overlap period, this dependency
is monotonic. If the input delays are generated by constant and reliable de-
lay lines, the phase differences will be also coded by the PD’s population
vector (see appendix A.1). Both “sum PD” and “vector PD” are valid PD
implementations.
Schematically, the two input signals to the PD can be described as square
- waves (see Figure 4c)-whose duty cycles are determined by their effective
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widths; an input will be considered as “on” at all time points in which,
had the other input been considered “on,” summation of the generated
EPSPs would be suprathreshold in at least one of the PD neurons. If the
PD’s output is a linear function of the inputs’ overlap time, then the transfer
function would take the form described in Figure 4d (see appendix A.5).
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Since g, is required to be monotonous, it is clear that a PLL can function only
in limited ranges of phase differences: either within one of the increasing
monotonic ranges (see Figure 4d, ePLL) or within one of the decreasing
monotonic range (see Figure 4d, iPLL). In the AND-like ePLL, the RCO’s
output leads the input (1, — n',,< 0), and in the AND-like iPLL, the RCO’s
outputlags the input (see Figure 4d). Each of these implementations requires
a different circuit to achieve the negative feedback (see appendix A.5). In
the ePLL, the PD excites directly the RCO, and in the iPLL the PD excites
inhibitory interneurons (INH) which, in turn, inhibit the RCO (see Figure 3
and section A.5.2). Note that the PD transfer function is periodic. Thus, large,
instantaneous input modulations can move the PLL from one working range
to another, producing only instantaneous tracking errors—that is, losing or
“filling in” one or more input cycles. _
-+

Y ¢
142

Figure 4: Facing page. Implementations of neuronal AND-like PDs. (a) A single-
cell PD. The two inputs, which are massive, generate two giant EPSPs with
exponential decays (A = 0.9, = 10 ms). More spikes are emitted when the
overlapping time is larger (i.e., when there is a smaller time difference between

the inputs). V,, resting voltage; Vi, threshold voltage. (b) A population PD. A
population of cells in which each cell receives a delayed version of the Input,

each after a different delay. The RCO signal decays more slowly (z = 33 ms)
than the Input and arrives simultaneously at all cells. As the time difference
between the arrival of the RCO signal and the Input increases, fewer cells will
be activated. (¢) A schematic description of a population AND-like PD. The
population signal of the Input is a pulse function, which is the “envelope” of
all the delayed versions of the input, ignoring fluctuations due to EPSP shapes.
At any time when both the Input and the RCO signal are “on,” it is assumed
that at least one of the PD cells will be activated (see section 2.2.1.2). The RCO
signal is described as a pulse function, where the pulse duration is defined by
the part of the RCO-driven EPSP in which adding an EPSP of the input (in any
of the PD cells) will drive the membrane voltage above threshold. If the time
difference between the two inputs decreases (dashed line of the RCO), the PD’s
output becomes stronger (two additional, dashed, spikes). (d) An example of
a linear AND-like PD transfer function (g,). The putput is stronger for time
delays [n,(n) — n,(n)] that have smaller absolute values (larger overlap) and
monotonically decreases in response to larger time differences. The exact form
of the periodic transfer function depends on the input parameters (dashed lines;
see section 2.2.1.2). The working range of the iPLL includes ISIs that are longer
than the intrinsic period (T.), while the working range of the ePLL includes ISIs
that are shorter than the intrinsic period.
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2.2.1.3 Other PD implementations. The AND-like implementation
adopted here is not the only possible one. PDs could implement an OR
function, in which the PD fires when either of its two inputs is active, or
an ANDNOT function, in which the PD fires only when the input is active
and the RCO is silent (E. Ahissar and M. Zacksenhouse, unpublished obser-
vations). Variations of these three basic mechanisms are also possible. For
example, each input can activate the PD by itself, whereas a synchronous
activation augments the PD’s output (an AOR operation). All of these mech-
anisms can be implemented in either ePLL or iPLL configurations. Since the
transfer function of the RCO is probably always a decreasing one, the po-
tential working ranges for each implementation are those in which the PD
function is increasing (see appendix A.2).

2.2.2 Implementations of RCOs. Almost any single neuron can be re-
garded as a voltage-controlled oscillator (VCO or VCON; Hoppensteadt,
1986). However, the PLL circuit presented here requires that the RCO ex-
hibit an explicit periodic output activity. One possible model for a neuronal
intrinsic oscillator is Calvin’s regenerative firing mode (Calvin, 1975). Ac-
cording to this model, each spike is followed by a strong afterhyperpolar-
ization (AHP), which recovers at some rate until it reaches the threshold
again, generates a new spike, and then restarts the process. The average
ISI, T,, is determined by the depth of the AHP and the average input to
the neuron. Modulations of the input produce modulations of the RCO’s
ISI (inhibition extends I,(f), whereas excitation shortens it (Calvin, 1975;
Perkel, Schulman, Bullock, Moore, & Segundo, 1964; Hoppensteadt, 1986;
see Figure 5). In another possible model, the RCO has intrinsically generated
subthreshold oscillations that become suprathreshold with an appropriate
DC input. The frequency of such oscillations is often controlled by the in-
put (Llinas, Grace, & Yarom, 1991). Both subthreshold and suprathreshold
intrinsic oscillations often present close-to-linear input-output (current to
frequency) transfer functions (Calvin, 1975; Llinas et al., 1991; Silva, Ami-
tai, & Connors, 1991). This implies that the input-rate to output-frequency
transfer function of these oscillators is close to linear, since the amount of
input current accumulated during a cycle is directly related to the rate of

N 6 synaptic activation.
d{\ " Three different frequencies are associated with an RCO. The intrinsic
N frequency (fo = 1/T¢) is the RCO’s frequency when the input to the RCO is
quiescent. The local frequency is the RCO’s frequency when the input to the
PLL is quiescent, a situation that may include spontaneous activity within
the loop. The working frequency (f, = 1/T,) is the RCO’s average frequency
during the decoding of a specific input.

2.3 Simulation. Validation of thebasicidea of aneuronal PLL circuitand
a demonstration of such a circuit’s operation is provided by a simulation
of a simple circuit that includes only the essential elements of the iPLL (see
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Figure 5: A neuronal RCO mechanism. (a) Output signal. The thick traces de-
scribe the membrane voltage of an RCO with no modulating input—when the
RCO oscillates at its intrinsic frequency. Additional excitation or less inhibition
will increase the depolarization slope, and thus increase the frequency of the
RCO’s output (top, thin trace). Additional inhibition or less excitation will de-
crease the slope, and hence decrease the frequency (bottom, thin trace). (b) A
schematic transfer function of the RCO plotted as in Figure 2b. As the input (Ry)
increases, the ISI (I,) decreases.

Figure 6a). The simulation was performed on a DEC 3100 workstation us-
ing Genesis, a general-purpose neuronal simulator (Wilson & Bower, 1989). .
Neurons were represented by two compartments: one that represented an
excitable soma that obeyed Hodgkin-Huxley kinetics and another that rep-
resented the dendrites. Three types of synapses were simulated: (1) fast-
excitatory, non-NMDA-like synapses witha conductance time constant (7) of
1ms; (2) slow-excitatory, NMDA-like synapses with t = 20 ms, and (3) slow-
inhibitory, GABAg-like synapses with r = 20 ms. Axons were simulated as
delay lines that conducted action potentials. Intrinsic oscillations were sim-
ulated by increasing the maximal sodium conductance by approximately
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Figure 6: Computer simulation of a neuronal PLL circuit. (a) Simulated circuit
and spike trains. The circuit was composed of one input cell (I), 20 PD neurons
(PD), 20 different delay lines from the input to the PD neurons, and one RCO
neuron (RCO) receiving an inhibitory input from each of the 20 PD neurons. The
timings of the input spikes and the membrane voltage of the RCO are presented
atthebottom. (b) The PLL’s output, which is the population output of the PD. The
spike trains of the 20 PD neurons are depicted. Each line represents, asa function
of time, the membrane voltage of one PD neuron. (¢) The RCO’s integrated
input—the total inhibitory conductance caused by synaptic input to the RCO
neuron. (d) The instantaneous ISIs of the input I and the RCO are described as
a function of time. After a lock-in stage, the two curves essentially merge.

50% (Alonso & Llinas, 1989; Llinas et al., 1991; Silva et al., 1991). The intrin-
sic oscillating frequency of the simulation was set by tuning the membrane

capacitance.

é% The width of the loop was set to w = 20. The input was simulated by
a single input cell (I) whose output was conveyed to the PD neurons via
20 axons, whose delays to the 20 PD neurons were uniformly distributed
between 14 and 20 ms and which formed fast-excitatory synapses on PD
neurons. All 20 PD neurons converged on a single RCO neuron via slow-
inhibitory synapses. For simplicity, the INH neurons were discarded and
replaced by direct inhibitory connections from the PD to the RCO. A sin-
gle RCO neuron represented the hypothesized 20 RCO neurons. This RCO
neuron fed back, by slow-excitatory synapses, each of the PD neurons.
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The ability of this simplistic simulated PLL circuit to decode periodic
modulations of periodic input signals was tested by “injecting” excitatory
intracellular currents into the input cell’s soma. Figures 6b—d depict the
results of one simulation. The input signal was a 1 Hz modulation of a
carrier frequency (35 Hz), with a modulation depth of 20%. The RCO fre-
quency locks to the input frequency (see Figure 6d); the instantaneous ISI,
of both the input and the RCO, are described by the two curves. After a
lock-in stage, the two curves merge, which indicates the frequency lock-
ing. In the locked condition, the input modulation of 1 Hz is decoded
by the PLL and approximated by a 1 Hz population signal (both popu-
lation vector and population sum) at the PD’s output (see Figure 6b). At
any given time, both the population vector (the actual firing neurons) and
the population sum (total spikes across the population) represent the input
ISI (within the PD resolution limits). The integrated inhibition (see Fig-
ure 6¢) modulates the RCO'’s frequency. This integrated signal is an inte-
gration of the PLL’s output, and it provides a measure of the population

um.

This simple simulated circuit was able to decode modulations of up to
2 Hz with a 20% modulation depth. However, one cannot learn about the
decoding limitations of the PLL from this simulation, since only a specific,
limited circuit was simulated. For example, the resolution of PLL decoding

depends on the number of elements, and the range of decodable modula- -

tion depths and frequencies, as well as lock-in dynamics, depends on the
loop gain. This simulation mainly demonstrates how PLL neuronal signals
should look in principle. To demonstrate the dependency of lock-in dy-
namics on the loop gain, I performed a MATLAB simulation of the iPLL,
using equations A4, A.9, and A.15 (see Figure 2) and a periodic PD function
with the profile depicted in Figure 4d. The results are shown in Figure 7.
All time variables are expressed in T, (the RCO’s intrinsic period; see ap-
pendix A.2) units. For an input period (T;) of 1.2 T, and an initial phase
difference [1,(0) — 7:(0)] of 0.3 T, lock-in time was one cycle for loop gain
(G) = —1 (see Figure 7a). When G was too small in absolute value (lower-
most trace) the RCO could not approach the input period. The reason was
that with such gains, the phase difference that was required to follow T; ex-
ceeded the PD’s working range (T,./2; see Figure 4d). Thus, with this specific
PD function, the working range of the iPLL was T, < T, < T.(1 + |G| /2).
iPLLs with G < —2 (upper-most oscillating trace) were not stable (see ap-
pendix A.2, equation A.17). Between these two limits of G, iPLLs could lock
in to the input, where lock-in times increased with increased deviation of
G from —1. However, lock-in times also depended on the initial phase dif-
ference (see Figure 7b). Thus, even with ideal PLLs, having G = -1, lock-in
to the onset of an input train might take more than one cycle, due to the
phase difference. A single cycle lock-in is guaranteed only when the PLL
is already locked to the input and a sudden change in the input periodic-
ity is introduced, as demonstrated in Figure 7c. Here, after four cycles of
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1.1 T, the input ISI was changed to 1.4 T, and from then on was modulated
around 1.25 T, with a modulation period of 10 T, and a modulation depth of
0.4 (peak-to-peak). Six iPLLs with 0.5 < G < 1.75 were simulated. Lock-in
to the input onset was not immediate, due to the nonoptimal initial phase
difference (0.3 T.). However, after the PLLs were locked, those who could
track the maximal input period (those with G < —1, see working ranges
above) tracked it more or less smoothly. The tracking errors are plotted in
Figure 7d. It can be seen that the iPLL with G = -1 (x’s) tracked the input
modulations with no errors, while the other iPLLs exhibit tracking errors,
as expected (see section 2.1 and appendix A.3). The output rate produced
by the iPLL with G = —1 is depicted in Figure 7e. Finally, the PLLs that
could reach the maximal T, (those with G < —1 in this case) were able to

9& ,»( égllow the highest possible rate of input modulations: (2T;) (see Figure 7f).

Note that the maximal rate of input modulations trackable by PLLs does
notindicate the maximal resolution of temporal decoding by PLLs. The latter
is determined by the smallest deviation of input ISI that can be detected by
a PLL and is determined by the resolution of the PD’s population output
(e.g., the resolution of the y-axis in Figure 7e). Thus, PLLs can detect (and
represent by rate) temporal changes with a resolution that can be much
higher than the maximal rate of temporal modulations that they can track.
For example, aPLL whose working rangeis 100 ms < T; < 150 ms can, with
enough PD resolution, distinguish between inputs of 110 ms and 111 ms,
although it cannot track 1 kHz modulation.

3 Tactile PLLs

The mammalian tactile system contains the neuronal elements required for
the function of thalamocortical PLLs. Following is a proposal for a plausible
implementation of PLLs by the primate tactile system. The peripheral tac-
tile system, which acquires sensations during exploration of textures, has
been described in detail over the past three decades. The tactile system in-
cludes the three following subsystems, which are classified according to the
temporal nature of their responses: slowly adapting (SA) receptors and neu-
rons, which respond optimally over the low range (~0-20 Hz) of stimulus
frequencies; rapidly adapting (RA) receptors and neurons, which respond
best over frequencies of medium range (~20-40 Hz); and Pacinian (PC) re-
ceptors and neurons, which mainly transfer information at high frequencies
(>80 Hz) (Talbot et al., 1968; Freeman & Johnson, 1982; Johansson, Land-
strom, & Lundstrom, 1982; Goodwin, John, Sathian, & Darian-Smith, 1989).
The glabrous fingertip is innervated mainly by RA receptors, by lower num-
bers of SA receptors, and by only a small number of PC receptors (Johansson
& Vallbo, 1979; Darian-Smith & Kenins, 1980).

Less is known about the central mechanisms underlying tactile decod-
ing and processing. The tactile pathways from the periphery to the cortex
preserve the phase of the stimulus (Darian-Smith & Oke, 1980; Mountcas-

A
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Figure 7: Dependence of lock-in dynamics on input parameters. The iPLL
algorithm was simulated in MATLAB (see text). Simulations steps (1) were
counted from 1. (a) Input (stars and dotted line): A steady input period at
T, = 1.2T,. G values (traces from bottom up at n = 2): 0.2, 0.6, 1.0, 1.4,
1.8, 2.2. Initial phase difference [An(1)] = 0.3T; (b) Input: Asina. G = —1.
An(1) = 0.15, 0.30, 0.45, 0.60, 0.75, 0.90 T.. (c) Input: Four cycles of 1.1T; fol-
lowed by I(n) = (1.25 + 0.25sin(n (n — 4)/10))T,, for n > 4. G values (traces
from bottom up at n = 2): 0.5, 0.75, 1.0, 1.25, 1.5, 1.75. iPLLs with G > —lare
plotted without symbols. An(1) = 0.3T.. (d) Tracking errors for the simulation
in c were computed as (I,(n) — L(n — 1))/ T,, forn > 1. Only G < —1 are shown.
G = —1is plotted with X’s. (e) The PLL’s output rate (Ry), in arbitrary units, for
the simulation in c. (f) Input: T, = 1.25 T, modulation rate (2T,), modulation
depth 40%. G values as in ¢c. An(1) = 0.1T,
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tle, Talbot, Sakata, & Hyvirinen, 1969; Ferrington & Rowe, 1980; Burton &
Sinclair, 1991; Gardner, Palmer, Hamalainen, & Warren, 1992). However, the
degree of phase locking gradually decreases along the afferent pathways,
with the largest reduction probably occurring at the transition from the tha-
lamus to the cortex, a transition that is also accompanied by an increased
complexity of response (Darian-Smith, Sugitani, Heywood, Karita, & Good-
win, 1982; Sinclair & Burton, 1988; Burton & Sinclair, 1994). This increased
complexity could be due to significant processing that occurs already at the
thalamocortical level (Gottschaldt, Vahle-Hinz, & Hicks, 1983).

3.1 Temporal Encoding of Textures. I consider here only textures (of
variable patterns and heights) on flat surfaces (e.g., textures of sandpapers,
clothes, woods, artificial gratings, or braille pages). A finger traversing these
types of surfaces usually moves along sections of approximately straight
lines (seffiigggg_ 8, top). The information contained in these textures con-
sisting of a collection of ridges is expressed by three variables: amplitude,
average spatial period (where period is 1/ frequency), and local spatial mod-
ulations. The information carried by the average spatial period (X;) is called
here the roughness of the surface and the information carried by local spatial
modulations (p,) the pattern of the surface. I use italics to distinguish this
specific stimulus-defined roughness from the more general roughness per-
cept. As I will show below, decoding roughness information can contribute

S to the roughness percept.

When a surface is transversed by fingertips, the spatial information is
encoded in two ways:

1. Spatial encoding: Across the contact area (~0.6 cm? in humans), atany
given moment, the spatial features are reflected by the corresponding
skin deformations leading to a spatially encoded response of the rel-
evant receptor population.

2. Temporal encoding: At any given skin location, receptors are respond-
ing to the fluctuations of the indentation amplitude produced by the
movement (see section A.6).

Spatial encoding is probably best mediated by the SA receptors (Phillips,
Johansson, & Johnson, 1990) and needs to be decoded by mechanisms uti-
lizing spatial comparisons. Temporal encoding is probably best mediated
by RA (and, to a lesser degree, PC) receptors, which respond reliably to tem-
poral modulations (Darian-Smith & Oke, 1980; Morley & Goodwin, 1987).
Such temporally encoded signals could be efficiently decoded by thalam-
ocortical PLLs. However, since point skin indentations are modulated by
both amplitude (due to vertical surface fluctuations) and time (due to hor-
izontal interval fluctuations; see Figure 8, top), the interpretation of the
decoded signals could be ambiguous. Electronic implementations of PLL,
facing similar problems, always include an amplitude limiter at the input
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stage (Gardner, 1979). Interestingly, the RA peripheral system employs a
similar mechanism. Responses of RA mechanoreceptive fibers to vibratory
stimuli, or moving spatial gratings, having amplitudes between fewer than
10 to hundreds of microns, are often of a 1:1 type; they fire one and only one
spike per vibratory or grating cycle, regardless of the amplitude (Talbot et
al., 1968; Darian-Smith & Oke, 1980; Goodwin & Morley, 1987; Gardner &
Palmer, 1989). Every RA fiber exhibits a 1:1 response within a specific range
of amplitudes (termed the “plateau” range; Talbot et al,, 1968) and tem-
poral frequencies (Darian-Smith & Oke, 1980). Outside these ranges, fibers
respond with bursts of variable lengths per cycle (Darian-Smith & Oke,
1980; Morley & Goodwin, 1987), depending on the force and frequency of
the stimulus (Darian-Smith & Oke, 1980; Goodwin et al., 1989).

Thus, in the case of the RA system and with a constant finger velocity,
the encoding of the horizontal features of textures is straightforward. The
horizontal (or temporal) modulations of the periodic indentation profile, as
a function of x (or #), can be described by the two methods used above to de-
scribe temporal periodic signals (see Figure 1 and appendix A.1): either with
respect to an imaginary “carrier” signal (see Figure 8a, P;(n)) or with respect
to the spatial intervals themselves (see Figure 8a, p;(n)) (see appendix A.6).
During scanning, the timing of the nth mechanoreceptive spike is uniquely
determined by the location of the nth ridge (see Figure 8b). If the response
type is 1:1, the RA mechanoreceptive fibers should fire one and only one
spike per every ridge in the surface, and the sensory transformation takes a
simple form: the horizontal spatial structure is directly represented by the
temporal structure of the RA spike trains (see appendix A.6). With different
ranges of finger forces, the 1:1 response becomes a 1:n response, and the
transformation is more complex. However, as long as the duration of the
bursts is small relative to the input average cycle (which is usually the case;
Darian-Smith & Oke, 1980; Morley & Goodwin, 1987), decoding efficiency
should hardly be affected since input onset times, which are the important
parameters for the decoding, are not affected. Yet the increased input inten-
sity and duration caused by the bursts should be compensated by a proper
tuning of the PLL’s loop parameters (S. Serulnik & E. Ahissar, unpublished
observations). Thus, for optimal performance, PLL parameters should be

tuned according to the expected form of input bursts.

3.2 Decoding by Thalamocortical PLLs. AsIwill show, the decoding of
tactile signals by PLLs requires an additional feedback loop. Thus, the pos-
tulated temporal tactile decoder, as one module within a global tactile tex-
ture decoder, includes many parallel PLLs embedded within a sensorimotor
feedback loop (see Figure 9). According to the model, the movement of fin-
gers across a surface activates skin mechanoreceptors (MR) which convert
the spatial details into temporal signals. The RA and PC mechanoreceptors
at the fingertip include amplitude limiters (L), which eliminate amplitude
modulations. The parallel array of input filters (IF; mechanoreceptors and
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their fibers) transfers the filtered signal to an array of somatotopic organized
PLLs, each specifically tuned to a particular frequency restricted to one of
the tactile submodalities (SA, RA, or PC). Therefore, every point on the skin
is driving a set of PLLs, each tuned to a particular frequency (see Dykes,
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1983). The output of all the PLLs is fed to two readout networks, IP and
IR, for pattern and roughness evaluation, respectively. The IR’s output drives
the velocity controller (VC), which closes the loop by controlling the finger
velocity.

Each PLL thus processes information about different spatial frequencies
of the explored surface. How does the brain know which PLLs provide rel-
evant information about the actual surface being explored and how can it
focus on these PLLs? If the PDs employ nonperiodic, sigmoid-like trans-
fer functions, the answer to the first question would be simple. Only PLLs
thatare tuned to the relevant (i.e., informative) temporal frequencies should
present modulated output signals. All other PLLs should produce outputs
that are saturated at either the highest or the lowest possible values. Thus,
the modulation depth of the AC output component, or a related measure
such as |Ru(#)|, should provide a reliable measure of the amount of informa-
tion contained in each PLL’s output. This criterion appears to be valid also
for periodic PDs (like the one in Figure 4d). As the input average frequency
moves away from the center of the working range, the probability of the in-
stantaneous frequencies to exceed the bounds of this range increases. Once
the input frequency exceeds one of these bounds, the PLL’s output is closer
toits average value, and its modulation depth decreases. Thus, local maxima
of |Ryc(t)| represent maximal information. Furthermore, it is most likely that
these local maxima will be graded among different PLLs, and a global max-
imum will also be available. The reason is that each PLL can obtain a larger

Figure 8: Facing page. Illustration of a temporal encoding of spatial featutes. The
movement of the hand (arrow) across a surface generates skin displacements
at the zone of contact. This series of displacements can be described as a spa-
tial signal [u1,(x)] that represents the texture in this one-dimensional direction
of movement. (a) Decomposition of the spatial signal. u,(x) can be decomposed
into vertical [A,(n)] and horizontal [either an imaginary “carrier” + P,(n), or
p«(m)] components. The similarity between P,(n) and p,(n) in this example is
due to the regularity of the pattern. G,(n) is the interridge interval. (b) Recep-
tor transformation. Assuming a 1:1 response of mechanoreceptive fibers and a
constant velocity, u,(x) is converted to a temporal signal described by s,(#). The
temporal signal, which is carried by the mechanoreceptive fibers, can be also
decomposed into subcomponents. However, due to the 1:1 response, which ne-
glects amplitude changes, the amplitude component is constant and equal to
1, and thus is ignored. ,(n) is the ISL. Refer to appendix A.1 for the definitions
of other terms. (c) Decoding by an ideal PLL. The phase-locking mechanism of
the PLL forces the RCO's output [s,(£)] to track the peripheral input [s, ()] with
a delay of one cycle (T,) and a constant phase difference (A@). As a result, the
brain can extract the modulation (M,(n) or m,(n)) that describes the pattern and
the average interval (T,) that describes the roughness. See appendices A.1, A.3,
and A.6 for explanation of other symbols.
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Figure 9: PLLs within a global texture decoder. Many topographically-
organized PLLs reside in parallel; only six are shown in the figure. Each PLL is
tuned to a specific frequency range within a specific submodality: SA, RA, or PC.
The input of each PLL is received from a set of mechanoreceptive fibers through
a set of dorsal column nuclei relay neurons, which together comprise the input
filter (IF). Most of the mechanoreceptors (MR) include amplitude limiters (L).
IP and IR are readout networks that produce pattern- and roughness-related in-
formation, respectively. A hypothetical spatial decoder illustrates the operation
of additional mechanisms in parallel.

working range if it tunes the slope of its PD function according to its average
frequency—smaller slopes for lower frequencies. In this case, the global
maximum will indicate the PLL whose working range is fully exploited.
Since neuronal excitation is often sensitive to the variability at the input
(Aertsen, Erb, & Palm, 1994), circuits that detect maximal variabilities can
be implemented. If such circuits are included in the PLLs’ readout networks
(e.g., IP in Figure 9), they can assist the selection of one of the submodalities
(SA, RA, or PC) and the specific PLLs within that submodality that are most
informative. Other factors affecting this selection probably include visual,
cognitive, and additional tactile information, such as that obtained by spa-
tial decoders (see Figure 9). According to this selection, the finger velocity is
deliberately determined to be in the range that will generate temporal fre-
quencies in the appropriate range for the chosen PLLs. By setting the finger
velocity, the system focuses on the selected PLLs, since they will generate
the most informative output. To keep this focus steady, an automatic feed-
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back system is required to carry out the fine-tuning of the velocity. Such a
feedback system could be tuned to maximize the amount of output infor-
mation from the selected set of PLLs, using |R.(#)| as a measure. Although
such an operation makes sense, I propose that if it is implemented, it is
implemented as a higher-order feedback loop. For maintaining the input
frequencies around a selected PLLs’ working point, such a feedback system
could simply operate on fluctuations of the averaged PLL’s output, Ry,.

Let us represent each selected group of PLLs by a single PLL. Once a
particular PLL is selected, the sensorimotor circuit responsible for temporal
decoding can be described by two loops (see Figure 10a): the inner loop is
the selected PLL, which extracts the input temporally encoded information
(see Figure 8) and recodes it by rate (see appendix A.7), and the outer loop is
an automatic velocity control (AVC), which keeps the input frequency of the
PLL centered around the PLL's working frequency. IP and IR are reduced in
this description to single filters, assumed to produce outputs related mainly
to the selected PLL. The other inputs to IP and IR are assumed to be averaged
out. The general case of processing, in which the average input frequency
can change (albeit slowly) over time, even beyond the working range of
the PLL, is assumed here. Thus, both the average input ISI and the average
PLL’s output are functions of time (T;(t) and Ry(¢), respectively).

3.2.1 The automatic velocity control (AVC). When the PLL is locked, the
average RCO’s ISI is approximately equal to the average input ISI (T (t) ~
T:(t); see appendix A.3). If either the average input spatial period (X;(#)) or
the finger velocity (V(#)) is changed, the PLL will move to a new working
point in which T,(#) & T,(t). Such a new working point will be associated
with anew average output rate (R;.(t)) of the PLL. However, if the working
range of the PLL is limited, as is the case for any practical implementation,
this adaptive process is also limited, and consistent drifts in the input aver-
age frequency can eventually lead to a loss of locking as the PLL leaves its
working range. From the point of view of the sensorimotor system, there are
two possible solutions to this problem: it can either have many PLL circuits,
each tuned to a different working range (the open-loop approach), or it can
actively maintain the input temporal frequency within a working window
(the closed-loop approach). The closed-loop approach, whose operation is
postulated here, requires that, while operating near the center of the PLL’s
working range, if T,(¢) is driven toward the limits of the working range, an
action will be taken to bring T;(#) back to its original value via the control
of the finger velocity, V(¢) (see appendix A.8).

The algorithm for the tactile AVC is composed of five elements (see Fig-
ure 10a): (1) a multiplier (MR), which multiplies the finger velocity by the
spatial frequency of the texture; (2) a PLL circuit, which converts the rough-
ness and pattern information to the DC and AC components of a rate signal;
(3) a base-band filter (BBF), which transfers only the frequencies related to
the pattern; (4) a low-pass filter (LPF), which transfers only the frequencies
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Figure 10: The algorithm of the AVC loop. (a) Loop components. MR, multiplier
that includes an amplitude limiter; PLL, one of the PLL circuits in Figure 9 thatis
selected for optimization; BBF, base-band filter; LPF, low-pass filter; VC, velocity
controller. £i(n), location of the nth input ridge; X, (x), average interridge interval;
n,(n), timing of the nth input spike; T;(t), average input ISI; Ry(?), firing rate of
the PLL’s output; R, (f), the integrated signal representing the pattern; Ry (t), the
integrated signal representing changes in roughness; V(t), the finger velocity. The
loop equations (inset) are explained in appendix A.8. (b) Schematic examples
of transfer functions. The crossing point (Twy, Rw) is the working point of the
AVC, which, optimally, fits the desired working point of the selected PLL.

related to changes in the roughness; and (5) a velocity controller (VC), which
controls the finger velocity.

The negative feedback nature of the AVC maintains the PLL’s mean input
ISI close to the PLL's desired working point (Tcw, Rew), which is the center
of the working range of the selected PLL. An increase in either the average
spatial frequency or the finger velocity will result in the input’s average ISI
decreasing, Ry (f) increasing, and V(t) decreasing (see Figure 10 and sec-
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tion A.8). As a result, T,(#) will be driven back toward T, with a dynamics
that depends on the actual | transfer functions. An opposite reaction occurs
when either the average spatial frequency or the finger velocity decreases.
Note that this servo operation holds for any given transfer functions, pro-
vided that they establish a negative feedback. Thus, dependence of tactile
inputs on motor outputs (Chapman, 1994; Nelson, 1996) should affect the
details of the AVC operation but not its principles.

3.3 Implementations of Tactile PLLs.

3.3.1 Implementations of tactile PDs. The tactile RA system appears to
have evolved such that thalamic RA “relay” cells can be used as efficient
phase detectors. The main features of the RA system contributing to this
efficiency are (1) a rectangular-like distribution of the conduction velocities
of RA fibers (Talbot et al., 1968; Darian-Smith & Kenins, 1980); (2) a close-to-
uniform receptor sensitivity across the receptive field (Johansson & Vallbo,
1983; Gardner & Palmer, 1989); and (3) slow (long duration) cortical-to-
relay neurons excitatory postsynaptic potentials (EPSPs) (Deschenes, Par-
adis, Roy, & Steriade, 1984). In general, the first two of these features are
also typical of the PC, but not of the SA, subsystem; the third is probably
common to all three of the tactile subsystems.

If organized correctly, the lemniscal input to the thalamic relay neurons

can implement a square-wave-like signal, like in Figure 4c. Given features 1
and 2 of the RA system, the lemniscal input contains subpopulations in

which, for a given point stimulus, different subsets of the input are active
at different times. A “point” stimulus—an abrupt indentation at a single
skin locatio—will generate a uniform response across all RA receptors that
include that point in their receptive field, due to the uniform sensitivity of
each receptor across its receptive field. When light touch is used, the skin
indentation is assumed to be within a plateau range of amplitudes where
the response has the form of one spike per one point stimulus (Talbot et al.,
1968; Darian-Smith & Oke, 1980). If each subpopulation of fibers that share
a skin location contains fibers with different conduction velocities, these
activations will arrive at the thalamic relay neurons at different times for
each fiber, like in Figure 4b. In this case, each of the fibers can be considered
as a delay line generating a specific delay from skin activation to the firing of
a lemniscal fiber. For the conductance velocities (Talbot et al., 1968; Darian-
Smith & Kenins, 1980) and hand length (~50 cm) of monkeys, the spread
of lemniscal firings probably contains mainly latencies betwéen 7 and 14
ms, not including the duration of input bursts. This range corresponds to
about one-fourth of a cycle of 30 Hz oscillations and is a reasonable range
for a PD (see section 2.2.1). However, different spreads of the afferent signal
are optimal for different PLL working frequencies. Thus, it is expected that
channels conveying lower frequencies will employ larger temporal spreads.
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3.3.2 Implementations of tactile RCOs. Obvious candidates for RCOs are
the posterior SII local oscillators (Ahissar & Vaadia, 1990). Many of the neu-
rons in this area display oscillatory patterns; however, not all of them canbe
considered local oscillators. At least 15% of the neurons in that area proba-
bly oscillate due to local mechanisms (Ahissar & Vaadia, 1990). The rest of
the oscillating neurons (about 30% of the population) are either externally
driven by the local oscillators, or their local oscillations are masked by a
significant amount of noncorrelated input. The local oscillators can either
directly drive thalamocortical neurons, if they project to the thalamus, or
drive corticothalamic neurons. Note that these single-cell oscillations do not
merely reflect sleeplike thalamocortical spindles (Steriade, McCormick, &
Sejnowski, 1993) since they appear in wakefulness, include mainly gamma
frequencies, and are not correlated among neighboring neurons.

There is no direct evidence yet that indicates an RCO-like operation of
the SII oscillating neurons. However, these neurons lose their oscillatory
patterns when stimulated with nonperiodic tactile stimuli (Ahissar & Vaa-
dia, 1990). This finding is consistent with the cortical oscillators trying to
track the nonperiodic input. More important, the distribution of oscillating
frequencies of these oscillators matches the peripheral distribution of best
frequencies (see Figure 11). A more direct evidence was obtained for S oscil-
lators in monkeys, employing RA frequencies (~30 Hz; Lebedev & Nelson,
1995), and in rodents, employing whisking frequencies (~10 Hz; Ahissar,
Alkon, Zacksenhouse, & Haidarliu, 1996). These oscillators can be entrained
by tactile periodic stimuli near their spontaneous frequencies, but usually
not with significantly higher or lower frequencies. Thus, PLL circuits might
exist in parallel in thalamocortical loops involving SI and SII cortices.

3.3.3 Implementation of Readout Networks. Each of the two readout net-
works, IP and IR, should implement at least two functions. The simple one,
which is required for the AVC operation, is filtering out the unnecessary
information. Both low-pass and bandpass filters are easy to implement by
neuronal networks, utilizing synaptic integrations and decays. In addition,
these networks should probably include circuits that compute and compare
input variabilities (IP) and input averages (IR). Detailed implementations of
these filters are beyond the scope of this article. Although the PLLs’ outputs
are described as converging to the readout networks (see Figure 9), they do
not necessarily have to converge. The readout networks can utilize parallel
processing and produce population outputs. Accordingly, the single lines
standing for the outputs of the two filters in Figure 9 denote the unity of
information conveyed by their outputs rather than the outputs’ physical
widths.

4 Discussion

4.1 Advantages and Limitations of PLLs. The PLL algorithm is used
extensively in electrical engineering for decoding of phase and frequency
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Figure 11: Cortical oscillating frequencies and peripheral frequency tunings.
(2) Distribution of oscillating frequencies of cortical (posterior SII) single-cell
oscillators (104 frequencies observed in 76 neurons of which 18 exhibited more
than a single frequency). Only frequencies larger than 2.8 Hz were included
for compatibility with the peripheral data. (modified from Ahissar and Vaa-
dia, 1990). (b—d) Estimated distributions of peripheral tuning to the frequency
of sinusoidal skin displacements. Ordinates depict estimations, for each input
frequency, of the number of mechanoreceptive fibers that innervate the skin
contact area and are tuned to that frequency. The distribution of tuning to vibra-
tory frequencies among the input fibers was estimated here by calculating the
“equivalent number of fibers” tuned to each frequency. The equivalent num-
ber of fibers per submodality is the fraction of the average response of that
submodality at each frequency multiplied by the average number of fibers of
the same submodality that innervates the stimulated area of skin. During light
touch, the contact areas of skin for humans and monkeys are ~0.6 cm? (Lamb,
1983) and ~0.2 cm? (Goodwin & Morley, 1987), respectively. (b) Mean responses
of mechanoreceptive fibers were obtained from data published for humans (Jo-
hansson et al., 1982) and innervation densities from data published for monkeys
(Darian-Smith & Kenins, 1980). Skin contact area was assumed té be 0.2 cm?.
Peak-to-peak indentation amplitude is 16 um. (c) Same as b, except that the
indentation amplitude is 32 yum. (d) Same as b, except that the innervation den-
sities were obtained from data published for humans (Johansson & Vallbo, 1979)
and skin contact area was assumed to be 0.6 cm?.
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modulated signals, frequency synthesis, and pulse synchronization. When
utilized as a phase demodulator, a PLL exhibits an excellent noise immunity
due to its adaptive narrowband filtering (Gardner, 1979). This narrowband
filtering is achieved by comparing the input against a specific internal fre-
quency and becomes adaptive because of the feedback control of the internal
frequency.

In principle, temporally encoded neuronal signals (see Figure 1) are
phase-modulated signals; therefore, utilization by the brain of a PLL mecha-
nism to decode temporally-encoded signals should be advantageous. How-
ever, there are limitations inherent in the PLL mechanism that the brain
would have to compensate for. One limitation arises from the adaptive be-
havior of the PLL, which limits the PLL’s capacity to track rapid changes
in the input. As with any other negative feedback loop, a few input cycles
may be needed before the PLL can lock in to a new input and efficient de-
coding can commence. Nevertheless, learning-induced fine tunings of the
loop parameters can reduce to a minimum (down to 1 cycle) the number of
lock-in cycles.

Another limitation of PLLs stems from the limited working ranges of
their implementations. A PLL cannot track, although it can detect input
modulations that are larger than its working range. The working ranges of
basic neuronal PLLs are usually around half a cycle, with the upper limit
probably being one cycle (see section 2.2). Thus, a typical, “nonsophisti-
cated,” neuronal PLL is limited to inputs with modulation depths of less
than 50%. If an RCO cannot produce the required frequencies, the PLL’s
working range will be even more limited. This limitation can be circum-
vented by having several PLL circuits in parallel, each tuned to a different
frequency range and decoding a different segment of the input information.
In addition, “sophisticated” implementations of PDs can extend working
ranges and reduce lock-in times.

A significant advantage of neuronal PDs is that transitions from one
implementation to another can occur within a given anatomical circuit by
changing cellular parameters. For example, at low excitability levels, a PD
neuron can implement an AND-like function, at high excitability levels an
OR-like function, and at intermediate excitability levels an AOR-like func-
tion (see section 2.2.1.3). Thus, neuronal PLLs can dynamically change their
loop parameters, including gain and working range, to accommodate to
global sensory changes or requirements. For example, a full-cycle working
range can be implemented by asymmetrical PDs that employ an AND-like
function for negative phase differences [1,(n) — n,(n) < 0] and an OR-like
function for positive phase differences. In such an asymmetrical AOR-like
PD, the order of input activation determines the sensitivity of the PD neu-
rons. The periodic PD transfer function of such asymmetrical PDs has the
shape of a sawtooth instead of the triangular shape of the symmetrical PDs
(see Figure 4d). The advantages of a sawtooth PD function are that the
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working ranges are larger, and with very large input modulations, the PLL
immediately shifts to another valid working range.

Other options that are probably available for neuronal PLLs are dynamic
tuning of the RCO’s local frequency, asymmetric RCO transfer functions,
and combined excitatory-inhibitory implementations of PLLs (see Figure 3a)
with asymmetric or dynamically shifted relative weights.

4.2 Plausible Sites for PLLs. Neuronal circuits that contain local oscil-
lators probably can function as PLLs without any specific tuning. In princi-
ple, the feedback connections and the basic phase detection function of any
neuron (see section 2.2.1.1) establish the essential requirements of the loop.
Nevertheless, efficient operation at a specific frequency range requires ad-
ditional tuning of the cellular and circuit parameters (see section 2.2). Some
neuronal systems have at least some of the required parameters for efficient
PLLs. Following is a summary of the requirements from the circuitry and
local oscillators and a review of plausible sites.

4.2.1 Potential Circuits. The sensory thalamocortical loops are attrac-
tive candidates for PLL circuits, since PLL performance improves when the
RCO-to-PD connections are massive, and having PLLs early in a process-
ing stream would be advantageous for facilitating sensory-sensory integra-
tion. Nevertheless, feedback circuits within or between cortical areas could
function as PLLs as well. Within thalamocortical loops, the natural imple-

mentation would be that the thalamic relay neurons function as PDs and
corticothalamic neurons at deep cortical layers function as RCOs. Natural

candidates for INH neurons in iPLLs are the cortical inhibitory interneurons
in layer 4 (White & Keller, 1987; Agmon & Connors, 1992; Swadlow, 1995).
However, other combinations, including inhibitory neurons of the reticu-
lar nucleus of the thalamus, or oscillatory neurons in superficial layers that
drive the corticothalamic neurons, are also possible, as long as the loop trans-
fer functions establish a stable negative feedback loop (see appendix A.2).
Within thalamocortical systems, many PLLs are expected to function in par-
allel, each tuned to a different combination of receptive field and working
range.

4.2.2 Local oscillators. In a PLL, a local oscillator should function as an
RCO, that is, its output frequency should be controllable by the input. The
RCO’s oscillations can be sub- or suprathreshold during spontaneous activ-
ity, as long as when decoding starts, the oscillations become suprathreshold.
With single or groups of cells, which are oscillating due to intrinsic mech-
anisms, control of the frequency of oscillations by the input is expected to
obey the simple neuronal rules required by the PLL: excitatory inputs should
increase the frequency of oscillations, whereas inhibitory inputs should de-
crease the frequency (see section 2.2.2). Thus, single-cell oscillators are ex-
cellent candidates for RCOs. In contrast, oscillations generated outside the
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processing network are not expected to be affected by the excitation levels of
the network and thus cannot function as RCOs. The effect of neuronal input
on a network that oscillates due to specific connectivity of excitatory and
inhibitory cells is not obvious and depends on the exact connectivity and
the exact input. Thus, neuronal ensembles that exhibit network oscillations
will not be considered candidates for RCOs but rather as circuits that can
be driven by RCOs.

Brain activity contains oscillations in a wide range of frequencies, from
circadian to millisecond ranges. However, only frequency ranges compat-
ible with perceptual time scales, during which sensory temporal codes
should be transferred to motor rate codes, will be discussed here. Emphasis
will be placed on the 10-100 Hz range, although lower and higher frequen-
cies can probably also be used for perceptual processing by PLLs.

4.2.3 The primate somatosensory system. Candidates for somatosensory
RCOs were presented in section 3.3.2. If PLLs indeed operate in somatosen-
sory thalamocortical circuits, network oscillations that occur in the primary
somatosensory and motor areas (reviewed in Fetz, 1993) during the per-
formance of tactile tasks or during periods with global excitation could be
due to propagation of the working frequencies from the PD neurons to the
sensorimotor areas. If input modulations are not overly strong, the work-
ing frequency is preserved in the synchronous PD firings, even though the
firing rate of the whole population might be modulated (see Figure 6).

4.2.4 The rodent vibrissal system. Many rodents achieve tactile sensory
acquisition with an active process in which their whiskers move back and
forth in a sinusoidal-like manner with frequencies near 10 Hz (Welker,
1964; Simons, 1995). Rodents use such whisking to localize (Welker, 1964)
and identify objects with strategies and resolution capabilities comparable
to those of primates achieved by applying manual active touch (Simons,
1995). During active whisking, the vibrissal pathway of the rat oscillates
synchronously at around 10 Hz (Nicolelis, Baccala, Lin, & Chapin, 1995).
These oscillations probably originate in the cortex, but in every cycle, the
peripheral neurons fire first, followed by the firing of cortical ones, which in
turnis followed by a firing of thalamic neurons. These observations are fully
consistent with PLL circuits of 10 Hz operating in the thalamocortical vib-
rissal system of the rat. Recently we observed that cortical oscillators in the
somatosensory cortices of anesthetized rats and guinea pigs exhibit three
modalities of oscillating frequencies, at roughly 1, 10, and 100 Hz (Ahissar
et al., 1996). It is possible that the ~10 Hz oscillators are utilized in PLLs
that detect the location of external objects and that the ~100 Hz oscillators
are utilized in PLLs that decode the texture of these objects (see Carvell &
Simons, 1995). .
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4.2.5 The auditory system. Under normal conditions, most of the single-
cell oscillations in the auditory cortex have frequencies below 14 Hz (Ahissar
& Vaadia, 1990). Thus, if auditory PLLs exist, they probably decode low-
frequency information derived from relatively slow processes such as speech
or movements of sound sources (Ahissar, Ahissar, Bergman, & Vaadia, 1992).

4.2.6 The olfactory system. Network oscillations occurring in the olfac-
tory system (Freeman, 1975) are probably utilized to enhance cortical pro-
cessing or to encode sensory information (Hopfield, 1995), but not to decode
temporally encoded sensory information which is not conjectured in this
sense.

4.2.7 The visual system. During stimulations, the visual pathway often
exhibits synchronous, wide-band oscillations (Neuenschwander & Singer,
1996; Engel et al., 1992; Eckhorn, 1994). Whether these oscillations are uti-
lized for the decoding of temporally encoded information or for recoding
spatially encoded information is not yet clear. The fact that the internal fre-
quencies are usually much higher than the so-called temporal frequencies of
the stimulus (i.e., the frequencies at which single receptors are stimulated)
is not indicative in this case. The temporal structure of the retinal output
depends also on the frequency of the sequential activation of neighbor-
ing receptors since, at least in cats, several receptors usually converge onto
single ganglion cells. The direct dependency of cortical frequencies on stim-
ulus velocities (Gray, Engel, Konig, & Singer, 1990; Eckhorn, Frien, Bauer,
Woelbern, & Kehr, 1993) supports the direct coupling between peripheral
and cortical oscillations. Visual temporal decoding by PLLs could rely on
single-cell oscillators in the thalamus or the cortex. Neurons in the lateral
geniculate nucleus (LGN) exhibit spontaneous stable oscillations (Ghose &
Freeman, 1992) that are disturbed once visual patterns are presented, which
is consistent with these oscillators trying to track modulated temporal struc-
tures. Neurons in superficial layers of the cortex exhibit intrinsic oscillations
during stimulations (Gray & McCormick, 1996). These neurons could func-
tion as RCOs probably only after initial sensory or internal preparatory
excitation.

4.2.8 Summary. The perceptual mechanisms of two sensory (tactile and
visual) systems that apparently can use PLL circuits involve motion of the
sense organs during sensory acquisition. Such movements result in encod-
ing of spatial information in temporal firing patterns, information that can
be efficiently decoded by PLL circuits. Hand movements can easily be mea-
sured with a resolution higher than that of the tactile receptive fields, while
such measurements with eye movements are difficult (Carpenter, 1988).
Thus, accurate testing of PLL’s predictions in visual systems is limited. PLLs
might be implemented differently in these two systems. For example, tactile
RCO:s are expected to be cortical, whereas visual ones could be thalamic.
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According to the PLL model, the network oscillations observed in the visual
and sensorimotor cortices reflect oscillatory activities in either the output
or the readout stages of PLL circuits.

After the cessation of oscillatory sensory stimulations in both the visual
and somatosensory modalities, the brain persists in emitting synchronized
oscillations having the same frequency of the stimulus (Narici et al., 1987).
This “oscillatory memory” requires a closed-loop operation, at either the
cellular or the circuit level, as suggested by the PLL model. Testing of this
phenomenon at low frequencies revealed that best resonating frequencies
for the somatosensory modality were 6 and 8 Hz and for the visual modality
10 Hz. It will be interesting to see whether similar phenomena occur with
oscillations around 30 Hz in the somatosensory system and 40 to 100 Hz in
the visual system.

4.3 Experimental Evidence for Thalamocortical Tactile PLLs. Current
physiological and anatomical data are compatible with PLL’s being imple-
mented within and across the thalamic ventrobasal nuclei (VB), SI, and SII
areas. Neurons that can be considered as local oscillators in the SA, PC, and
mostly RA ranges exist in SI and SII areas of primates (see section 3.3.2).
The high percentage of posterior SII oscillators and the grouping of os-
cillators with frequencies that correspond to the three submodalities (see
Figure 11) suggests an important role for SII in temporal decoding of tex-
tures. In fact, lesions in SII of primates significantly impair tactile texture
decoding (Murray & Mishkin, 1984; Carlson, 1990). Furthermore, the direct
motor connections of SII to the primary motor cortex (MI) (Jones, 1986; Bur-
tdn, 1986) would facilitate participation of SII in a basic sensorimotor loop,
such as the one described by the AVC loop.

The input tactile channels are evidently not fully segregated; sensory
information is probably shared by different frequency channels and even
between different submodalities. Thus, the decoding details cannot be as
simple as described here. However, if channel segregation holds to a certain
degree, PLL-like decoding could occur, and in this case the decoding prin-
ciples outlined in this article should hold. Note that although anatomical
continuity within input channels is required for input pathways running up
to the cortex and back to the thalamus, physiological consistency of response
type is required only up to the thalamus. In fact, the PLL model suggests
that a significant code transformation occurs at the thalamocortical level.
Thus, the findings that cortical response types are not correlated with pe-
ripheral ones (e.g., Tremblay, Ageranioti-Belanger, & Chapman, 1996) are
not in conflict with the PLL model.

Below are presented data that are consistent with (i.e., can be explained
by) the PLL model and data that support the model (i.e., that are more
consistent with the PLL model than with other models). Since no other
specific mechanism has yetbeen suggested for texture decoding at the circuit
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level, the PLL will be compared with the open-loop model of local oscillators
(Ahissar, 1995) and with “non-PLL” mechanisms in general.

4.3.1 Data consistent with PLLs functioning in the tactile thalamocortical sys-
tem.

¢ The RA system employs amplitude limiting, uniform receptive fields,
and temporal dispersions, all required for efficient thalamic phase de-
tection (see sections 3.1 and 3.3.1).

¢ The RA pathway exhibits a high degree of phase locking that preserves
the temporal information up to the thalamus (see the introduction to
section 3).

¢ The mechanoreceptors and their fibers act as bandpass filters; they
emphasize a certain range of the input frequency spectrum (Johansson
etal., 1982; Freeman & Johnson, 1982; Goodwin et al., 1989), as required
for efficient PLL decoding.

¢ Thereciprocal connections between the thalamus and cortex are modal-
ity and somatic specific (Jones, 1986; Doetsch, Standage, Johnston, &
Lin, 1988; Hoogland, Welker, & Van der Loos, 1987).

o The circuitry required for the function of thalamocortical ePLLs and
iPLLs exists in mammals (Jones, 1986; White & Keller, 1987; Agmon &
Connors, 1992).

e Thalamic relay neurons are activated with short EPSPs from affer-
ent projections and long EPSPs from cortical inputs (Deschenes et al.,
1984), an arrangement that facilitates thalamic PD operation (see sec-
tion 3.3.1).

¢ Oscillating frequencies of SI neurons can be controlled locally (Silva et
al.,, 1991; Amitai, 1994; Ahissar et al., 1996).

¢ Two successive stimuli to the same location on the skin are not differ-
entiable for delays between 0 and 1540 ms (Rosner, 1961), consistent
with a PLL-like mechanism that “samples” the input using RA-range
frequencies.

o Talbot et al. (1968) suggested the existence of a central mechanism that
“alters its own activity [which “measures”] the dominant period in
the input train of impulses.” The PLL, by altering its own activity (the
RCO'’s frequency), can “measure” the dominant input period.

4.3.2 Data that support PLLs in the tactile thalamocortical system.

¢ Local oscillators in SI of monkeys (Lebedev & Nelson, 1995) and of
anesthetized rats and guinea pigs (Ahissar et al., 1996) can be entrained
by oscillatory tactile stimuli when the input frequency is close to the
local frequency.
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When vibratory stimuli are applied within series of decreasing inten-
sities, minimal detection thresholds were consistently slightly lower
than during series of increasing intensities (Talbot etal., 1968). Whereas
this result cannot be explained by neural mechanisms involving adap-
tation or habituation, it is easily explained by PLL-like mechanisms:
A minimal input intensity is required to lock in the PLL (increasing
series), but once the PLL is locked (decreasing series), less input in-
tensity is necessary to keep it locked, since the local oscillators already
fire in phase with the input.

A qualitative coding transformation, from temporally oriented at the
thalamus (Sinclair, Sathian, & Burton, 1991) to rate oriented at the cor-
tex (Sinclair & Burton, 1991), appears to occur at the thalamocortical
level of monkeys performing a texture discrimination task. The grad-
ual nature of the cortical responses is more consistent with the PLL
than with alternative open-loop mechanisms producing labeled-line
coding (Ahissar, 1995).

4.3.3 Data consistent with inhibitory PLLs.

There is evidence “that presumed inhibitory interneurons in the cat
SI could be activated first by thalamic inputs among cortical neurons
and set to inhibit the output cells” (Yamamoto, Samejima, & Oka, 1988,
p- 199).

Activities of local oscillators in SI of the behaving monkey are often
inhibited by vibrotactile stimuli (Lebedev & Nelson, 1995).

Local oscillators in S of the rat receive strong inhibitory input (Chagnac-
Amitai & Connors, 1989).

With SII neurons of cats, firing in phase with a vibratory stimulus is
impaired when GABA receptors are blocked (Alloway, Sinclair, & Bur-
ton, 1988). This is consistent with cortical phase locking being achieved
by inhibitory PLL circuits.

In response to thalamic (VB) stimulation, corticothalamic neurons in
SI of cats exhibit inhibitory postsynaptic potentials (Landry & Dykes,
1985). Synaptic excitation is also observed in some of these neurons,
which suggests a combination of ePLLs and iPLLs.

Somatosensory cortical neurons of rats have been classified accord-
ing to whether they are coactivated with fast (~20 Hz) electroen-
cephalogram waves (CoE cells) or not (Col cells) (Angel, 1983). CoE
neurons exhibit rhythmic firing around 20 Hz, dominate the electro-
encephalogram when Col neurons are quiet, respond to peripheral
inputs with longer latencies then Col neurons, and activate thalamic
(reticular) cells with a shorter latency then Col neurons do. All of these
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phenomena are consistent with CoE functioning as RCO neurons and
with Col functioning as inhibitory interneurons (INH).

e About 25% of the SI neurons of the monkey exhibit a sharp, positive
sigmoidal dependency on the spatial period (Sinclair & Burton, 1991;
see also Darian-Smith et al., 1982), as expected by iPLLs (see Figure 6).
Negative sigmoidal dependency, as predicted by ePLLs, was not ob-
served.

4.3.4 Data that seem inconsistent with PLLs in tactile thalamocortical systems.

o Although the primary function of the proposed PLLs in tactile tha-
lamocortical systems would be in perception of patterns, these PLLs
should, using only temporal input information, be able to convey infor-
mation about the roughness of the scanned texture. However, in some
cases, estimation of roughness is independent of the temporal param-
eters of the peripheral input (Lederman, 1981). This would imply that
even if PLL circuits exist in the somatosensory system, their contribu-
tion to the perception of roughness is negligible. However, so far, only
a partial range of possible conditions has been studied—for example,
only spatial frequencies of relatively high frequencies (groove widths
of 0.175-1 mm; Lederman, 1981). Also, the involvement of temporal
information was tested only after subjects were trained to estimate the
roughness of different textures at different velocities. Since the nervous
system is capable of developing perceptual constancies over many pa-
rameters, one of which is probably finger velocity, naive rather than
trained subjects should have been used. When naive subjects are re-
quired to identify forms or discriminate gratings, perception indeed
depends on finger velocity (Vega-Bermudez, Johnson, & Hsiao, 1991;
Ahissar & Gamzu, 1995). Furthermore, during training with a difficult
discrimination task, subjects developed scanning strategies that were
based on maximizing differences between temporal frequencies by
controlling the scanning hand velocities (Gamzu, Haidarliu, & Ahissar,
1994).

o As the spatial frequency of the stimulus decreases, the SA and RA
mechanoreceptive fibers in the hand of the monkey fire more spikes
per second, even if the peak temporal frequency of the stimulus is kept
constant (Goodwin & Morley, 1987). This seems to contradict a basic
assumption of the tactile PLL that peripheral firing depicts in a 1:1
manner the existence of texture ridges. These experiments were con-
ducted with indentations (1 mm) well above the peripheral threshold
(tens of microns; Talbot et al., 1968), which probably forced the pe-
ripheral fibers to function outside their plateau range (see Goodwin
et al., 1989). Nevertheless, the spatial features were still represented
by the peripheral temporal structure, though with a 1:n ratio (Mor-
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ley & Goodwin, 1987; Goodwin et al., 1989). In principle, PLLs can
decode 1:n input ratios, and the decoding efficiency depends on the
parameters. For example, if the bursts increase the input spread (Tuw:;
see Figure 4) beyond T;/2, performance could be impaired. However,
if they bring Ty, closer to T,/2, performance should improve. Since
the length of these bursts increases as the spatial frequency decreases
(Goodwin et al., 1989), they might indeed improve the efficiency of the
putative PLLs. Note, however, that the peripheral burst lengths are not
necessarily preserved at the outputs of the dorsal column nuclei.

The PLL model for the tactile thalamocortical system predicts that the
temporal information of the input will be represented by the firing
rates of cortical populations. In contrast, Burton and Sinclair (1994)
concluded that the cortex probably encodes spatial features of the sur-
face independent of temporal factors. However, since only correlations
between average values of cortical rates and hand velocities were com-
puted, velocity was not systematically varied, and “velocity was not
well controlled” (Sinclair & Burton, 1991, p. 165), these results cannot
rule out representations of input temporal structures in cortical rates.
Indeed, Chapmann and colleagues found recently, applying system-
atic variations of input velocities, that the firing rates of 66% of SI
neurons are directly related to the stimulus velocity (Tremblay et al.,
1996).

Johnson and Lamb (1981) argued that the temporal dispersion caused
by a wide distribution of conduction velocities of mechanoreceptive
fibers, especially those of RA fibers, can contribute to a spatial dis-
persion (blurring) of the image of the scanned texture. This would
indeed be the case with a central mechanism that blindly integrates
input signals from all input fibers. However, a PLL-like mechanism
can actually benefit from such dispersions, which convert input “click
trains” to lemniscal square waves (see Figure 4c) and enable the PD
operation (see sections 2.2.1 and 3.3.1).

Connor and Johnson (1992) have compared spatial and temporal en-
coding schemes as possible candidates to underlie tactile roughness
estimation and showed that spatial variations have the closest corre-
lation with roughness estimations. However, in some spacing ranges,
temporal variations are better than spatial variations in predicting the
subjects’ reports (compare Figures 9 and 10 in Connor & Johnson, 1992).
A view consistent with this and other (e.g., Ahissar & Gamzu, 1995)
studies is that different perceptual mechanisms are emphasized as a
function of the task at hand and the range of the spatial frequencies be-
ing explored. Roughness estimation tasks and low-spatial-frequency
pattern discrimination tasks are probably primarily dealt with by spa-
tial mechanisms (Connor & Johnson, 1992, and Ahissar & Gamzu,
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1995, respectively) while high-spatial-frequency pattern discrimina-
tion tasks are primarily dealt with by temporal mechanisms (Ahissar
& Gamzu, 1995), such as the PLL. This is consistent with the finding
that superimposed vibrations improve stationary grating resolution
in a range of high spatial frequencies and decrease performance in a
range of lower frequencies (Johnson & Phillips, 1981).

4.3.5 Summary of experimental evidence. Experimental data indicate that
under certain conditions, operation of a PLL-like mechanism is feasible at
the thalamocortical level of mammalian tactile systems. In this system, cur-
rent data favor the existence of iPLLs over ePLLs, although combined oper-
ation of both implementations has been indicated. If such PLLs exist, they
should function in parallel to other, nontemporal, decoding mechanisms.

4.4 Interactions with other tactile mechanisms. If PLL circuits do exist
in the brain, it is likely that they do not exist as isolated circuits and they
operate in parallel with other temporal and nontemporal decoding mech-
anisms. In fact, Johnson, Phillips, and colleagues have shown that some
spatial features are most efficiently resolved by the SA system (Johnson &
Lamb, 1981; Phillips & Johnson, 1981; Phillips et al., 1990), and this resolu-
tion appears to occur without significant dependency on temporal parame-
ters (Phillips, Johnson, & Hsiao, 1988; Phillips, Johansson, & Johnson, 1992).
They suggested that both “spatial” (involving the SA system) and “nonspa-
tial” (involving the RA system) mechanisms underlie texture perception; the
RA system probably encodes the microscopic dimensions and the SA the
macroscopic dimensions of the texture (Johnson & Phillips, 1984). Similarly,
I suggest that PLL circuits are embedded in and intermingled with other
circuits and that, as a whole, these circuits function as a texture analyzer
(Taylor, Lederman, & Gibson, 1973). Within such embedded and intermin-
gled circuits, operations that obey PLL principles should occur in parallel
to other operations that obey other principles. Other possible operations
could be purely spatial, such as spatial variation detection (Connor & John-
son, 1992), or spatiotemporal, such as cross-coincidence detection among
parallel phase-preserved input signals. In real time, the adaptive brain can
emphasize one or another operation, according to the task at hand and pre-
vious experience. Thus, PLL circuits, which probably occur predominantly
in the RA system, can decode temporal information related to the pattern—
to the fine details of the surface—while spatial mechanisms (e.g., Bankman,
Hsiao, & Johnson, 1990), which predominantly use the SA system, can de-
code rate-encoded information related to the macroscopic details (e.g., the
roughness or shape) of textures. In addition, SA-based intensity mecha-
nisms can refine pattern perception by using detailed spatial information,
and PLL circuits can refine roughness perception by using fine temporal
information.
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4.5 Predictions of the Tactile PLL Model. The predictions derived di-
rectly from the algorithm are considered critical; a rejection of any one of
them results in a rejection of the model or, at least, a major modification of it.
A rejection of an implementation-specific prediction results in the rejection
of only that specific implementation. The electrophysiological predictions
require a distinction between two types of neurons: RCO neurons, which are
local oscillators, and PD (or PD-driven) neurons, whose oscillating activity
is externally driven. A partial list of both types of predictions follows. The
implementation-specific predictions are detailed only for the AND-like, vec-
tor PDs (see section 2.2.1.2). For these implementations, the thalamocortical
relay neurons can function as PDs only if the lemniscal input is subthresh-
old; therefore, the related predictions apply only for light touch, such as that
used for texture discrimination.

Algorithm-Derived (“critical”) Predictions.

AVC predictions.

al. During a difficult identification of a patterned texture, the exploring
velocities are expected to maintain the average temporal frequency of
the input within one of the three ranges that correspond to the trimodal
distribution of cortical oscillating frequencies (see Figure 11), with the
RA range being preferred.

PLL predictions.

a2. RCO neurons are expected to track, within a range around their spon-
taneous oscillating frequency, variations in the frequency of a vibra-
tory stimulus.

a3. When a periodic stimulus is applied at a frequency that matches the
frequency of the RCO, the PD neurons are expected to be phase locked
with both the stimulus and the RCO neurons, and, during phase-
locking, the spikes of the PD neurons should usually (and in AND-like
implementations always) lag those of the RCO neurons.

a4. When the loop is locked, the net excitatory input to the RCO should
be a monotonic increasing function of the input frequency. This is
because in order to follow a higher frequency, a neuronal RCO needs
to be excited further.

a5. While the PLL is locked, as the frequency of the stimulus is increased,
the delay between the input and the RCO neurons, (1o — 1:), becomes
more positive (see Figure 4d).

a6. Within the PLL's working range, the response of the PD population
should be monotonic with the input frequency. The polarity of this

relationship depends on the implementation (see Figure 3) and the
measurement point (e.g., before or after an inhibitory stage).
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Implementation-Specific (“Noncritical”) Predictions for AND-Like Vector PDs.

Thalamocortical Implementations.

tl.

Within groups (or “rods”; Jones, 1986) of thalamocortical relay neu-
rons that share the same receptor modality, receptive field location,
and cortical projecting area, different neurons will have different re-
sponse latencies (phase shifts) that preferentially cover a range of sev-
eral ms.

Excitatory PLLs (ePLLs).

el.

e2.

e3.

e4.

Usually an abrupt and strong peripheral stimulus should increase the
instantaneous frequency of an RCO.

The higher the input frequency, the higher the fraction of PD neurons
that should respond to the input.

Entrainment of single PD neurons should exhibit a steplike or sig-
moidal dependency on input frequency. They should not be entrained
to low frequencies and should start to respond once the input fre-
quency becomes higher than a certain threshold.

At low input frequencies, only PD neurons that respond with short
latencies should respond. As the input frequency increases, addi-
tional PD neurons, which have incrementally longer response laten-

cies, should be recruited. Thus, although all PD neurons can maintain
phase locking at high-input frequencies, PD neurons with shorter re-

sponse latencies should maintain phase locking to stimuli of lower
frequencies.

Inhibitory PLLs (iPLLs).

il.

i2,

i3.

4.

Usually an abrupt and strong peripheral stimulus should decrease the
instantaneous frequency of an RCO.

The higher the input frequency, the lower the fraction of PD neurons
that should respond to the input.

Entrainment of single PD neurons should exhibit a steplike or sig-
moidal dependency on input frequency. They should be entrained to
low frequencies and should stop responding once the input frequency
becomes higher than a certain threshold.

Athigh-input frequencies, only PD neurons that respond with long la-
tencies should respond. As the input frequency decreases, additional
PD neurons, which have decrementally shorter response latencies,
should be recruited. Thus, although all PD neurons can maintain
phase locking at low input frequencies, a PD neuron with a longer
response latency should maintain phase locking to stimuli of higher
frequencies.
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Appendix

A.1 Temporally- and Rate-Encoded Neuronal Signals. Any spike train
that consists of N spikes of a single neuron can be described as (see Figure 1a)

N-1
s()) = D_ St~ n(m) (A1

n=0

where S(#') describes a single spike triggered at ' = 0 (see Figure 1a inset),
and n(n) describes the series of spike timings,

nm) =) +nT + M@ =n©@ +nT+) m@, n>0 (A2
=1

where T is the average ISI; M(n) is the “absolute” modulation of T for the
nth spike and represents the deviation of the timing of the nth spike from the
expected timing of the nth spike of the equivalent ideal oscillator having the
same T; and m(n) is the “cycle modulation” and represents the deviation of
the nth ISI from T. By definition, the total modulation over the whole spike
train should be zero

[M(N) =) m() = o] :

=1
For an ideal oscillator, M(n) = m(n) = 0 for every n. The instantaneous

ISI is (see Figure 1a):

Im)=nn)—nn-1) =T+ mMmn), n>0 (A.3)
)

nm =n0+» IG, n>0. (A4)
1=1

It is assumed, as a convention, that the spike train was not modulated prior
to n = 0; therefore:

I0)=T; m(o) = 0; m(j)=0, j<O (A5)

The information carried by the spike train is described by T and m. Generally
the information carried by T and m could be referred to as rate-encoded
and temporally-encoded, respectively, since T is a measure of the average
firing rate over the whole period and m is a measure of the fine temporal
modulations within that period.
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A description of a signal by rate requires the division of a spike train into
rate bins, with each rate bin being represented by a single number. Each of
these single numbers can be evaluated by a variety of functions, ranging
from a simple spike count to a weighted average that uses a postsynaptic
filter function. Here, rate-encoded signals will be represented by simple
spike counts over each rate bin. If other measurements are required, the
spike count terms (e.g., A(k) in equation A.6) should simply be replaced
with other terms. Thus, a spike train can be described by a series of counts
of spikes, where each count corresponds to a single rate bin (see Figure 1b):

Nr-1
R = }: A(OR(t — kT,), (A.6)
k=0

where T, is the rate bin, R(#) isa pulse function thatequals 1 for0 < ¥ < T,
and 0 otherwise (see Figure 1b, inset), A(k) is the spike count of the neuron
at the kth rate bin, and N; is the number of rate bins in the spike train.

For simplicity, negative “firing rates” will be ascribed to inhibitory inputs.
Thus, a rate signal is defined as the difference between the count of spikes
leading to EPSPs and the count of spikes leading IPSPs. For example, a
single excitatory cell can produce only positive rate values, and a single
inhibitory cell can produce only negative rate values.

Two kinds of population rate coding are considered here: population
sum, which, per each rate bin k, is the sum of all A;(k), and population
vector, which, per each rate bin k, is the array of all A, (k).

A.2 Phase-Locked Loop.

A.2.1 Rate-controlled oscillator. The RCO’s output signal is:

N-1
so(t) = ) S(t — no(m)) (A7)
‘ n=0
where
‘ no(n) = no(0) +nT, + M.(n). (A.8)

T is the RCO’s intrinsic period—its ISI when it receives no input—and
M,(n) is the nth spike’s absolute modulation (see equations A.2 and A.3 for
othl;% related definitions). The ISI (the “cycle”) of the RCO is controlled by
its input in the following way:

' I (n) = T, + g,(Ra(n)), (A9)

where g,, in the general case, is a monotonic decreasing or a monotonic
increasing function, g,(0) = 0, and R;(n) is the input to the RCO inte-
grated over the interval preceding spike 1, during I,(n) (see Figure 1 and
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section 2.2.2). In neuronal implementations, g, will probably always be a
decreasing function in which the more positive (excitatory) the oscillator’s
input is, the sooner the oscillator will fire its next spike, and vice versa for
more negative (inhibitory) inputs.

The average value of Ry(n) is not necessarily, and usually will not be, 0.
Therefore, T, will not necessarily equal the average ISI of the RCO. To be
consistent with equation A.3, for any given decoding period, Ry(n) will be
described as being composed of two components: a DC component (the av-
erage value, Ry;) and an AC component (the residual modulations, Rec()):

Ry(n) = Ryc + Rac(m), (A.10)
and the average ISI of the RCO, T,, will be:
T, = T + (o(Ra(n))}, (A1)

where (x) is the average value of x over the described decoding period.
Thus, the output timings of the RCO can be rewritten as:

no(n) = 1o (0) + nT, + Mo(n)

= 10(0) +nTo + Y _mo(j), 1> 0. (A12)
=1

For a linear g, we get:

(8o(Ra(m)) = go(Rac), (A13)
and the instantaneous ISI is (from equations A.3, A.9, and A.11),

L(n) = To + go(Rac(n))- (A14)

A.2.2 Phase detector. The PD’s output, Ry(n), is a rate-encoded signal,
which is a function of the difference between the arrival times of the PD’s
two inputs,

Ri(n + 1) = ga(no(n) — n,(n)), (A.15)

where g; is a monotonic increasing or a monotonic decreasing function.
The difference n,(n) — ni(n) is simply the difference between the times of
appearance of the nth spikes of the RCO and the PLL’s input, where 7 is
counted only within a locked state, when the RCO’s and the input’s spikes
are paired. With neuronal implementations, g; probably cannot achieve a
strict monotonic shape but rather will assume a staircase-like form. There
will be ranges of phase difference within which the PD will produce a con-
stant output. The size of these ranges determines the PD’s resolution (see
section 2.2.1) and, hence, also the PLL’s resolution.
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A.2.3 The loop gain. The ability of the PLL to be locked to the input de-
pends on the loop’s functioning as a negative feedback loop. Iy such a neg-
ative feedback loop, any deviation of the input from its expected frequency
will produce an error signal (R,) that will drive the RCO’s frequency in
the direction that will reduce the error—in the same direction as the input’s
deviation. To provide a negative feedback, the gain along the loop during
one cycle, referred to as the loop gain, should be negative. The loop gain,
G, is computed per a working point (e.g., the crossing point in Figure 2b),
assuming a constant input. It is equal to the gain of a small perturbation
from the working point that is obtained after one cycle and is apptoximately
(exactly for a linear system)

G~ g8 (A.16)

where, with continuous g, and g, g, and g, are the derivatives of g, and gy,
respectively, at the working point. With discrete g, or g;, g\ equals Ay/Ax,
where Ay is the output change generated by a minimal input change (Ax).
The PLL will be stable only if any deviation from a working point, gener-
ated within the loop while the input is constant will be attenuated at the
next cycle. A perturbation will be canceled at the next cycle if G = —1,
will be attenuated if —~1 < G < 0, and will be inverted and attenuated if
—2 < G < —1. Outside this range, any perturbation will increase in abso-
lute magnitude with each successive cycle. Thus, a necessary, although not
sufficient, requirement for a stable PLL is

-2<G<0. (A.17)

Therefore, to keep a PLL stable g; and g, must have opposite slopes around
the working point (see, for example, Figure 2b). A range within which input
modulations can be decoded is defined as a working range of the PLL. This
range is determined by equation A.17, the dynamic range of the RCO, and
the input average frequency.

A.3 Tracking. For clarity, let us consider an ideal PLL, in which the
derivatives of g; and g, are constant (equal to k; and k,, respectively),
G = —1, the RCO fires single spikes per cycle, and there is no noise. Suppose
the input to the PLL (hereafter “the Input”) is:

N-1
si(f) = Z S¢—mm), Lm=Ti+mm, n>0" (Al8)
n=0 -
and

m,(n) =0, n<0.
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When the loop is locked, there is one and only one RCO spike per each
Input spike. If the Input is not modulated (i.e., it is perfectly periodic), the
timings of the RCO’s spikes will differ from the Input spikes only by a
constant time delay (phase shift),

no(n) = m(n) + AL (A.19)

where A@ is a constant time difference and n is the index of the Input cycle.
And

I(n) = Li(n). (A.20)

When the Input is temporally modulated, the modulation is detected by
the PD, which detects the difference between the expected n,(n) (“stored”
as 7,(n)) and the actual timing. The detected difference corrects the RCO’s
frequency so that the latter matches the Input frequency. However, this
correction will take place only at the following cycle (n + 1):

L =Ln-1) / (A21)

i

and, from equation A.3,
To + me(n) =T, + my(n —1). (A.22)

By definition, T, is the average ISI of the RCO, and as long as the loop is
locked, it is equal to the average Input ISI, T,

T, =T, " (A23)
and, therefore,
my(n) =m,(n—1). (A.24)

Thus, the Input modulation is replicated by the RCO’s modulation, with
one cycle lag.

The average periods, T, and T;, are defined de facto for every decoding
period. Thus, the PLL does not “know” the exact values for these averages
during the decoding, and a decomposition of its output signal to the differ-
ent components will fit the above definitions only at the end of the decoding
period. Note, however, that this non-causal process relates only to the ob-
server’s interpretation of the decoding process and does not relate to the
process itself, since the decoding utilizes the actual timings [1,(n) and 5,(n)]
of the signals (equations A.9 and A.15).
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A.4 Decoding. It can be shown that with ideal PLLs,

Ric = 84(AD) (A.25) M-
|
R +1) = —gg(mi(n)) = g5 (mi(n)) (A.26)
AD =Tc—T, + Bnm. (A2

AQ is the average phase difference and, together with Ry, determines the
PLL’s working point (see Figure 2b). @ is a constant delay that depends
on the implementation (see section A.5.2).

If g4 or g, is not linear, the AC component will depend on the DC compo-
nent thatis, on the working point. However, since g; (and g;1) is monotonic,
R(n) is unique (within the resolution limits) for every input. When G # —1,
the above solutions are the steady-state solutions that are obtained after a
variable number of cycles, depending on G.

Usmg minimal rate bin (= T}), the output of the ideal PLL is (see equa-
tlon A6),

} N-1
Ry(®) = ga(Te = Ti + @) — ) _[galmu(n — I)R(E — nT)]. (A28) (2/

n=0 ¢

Réadout mechanism that employ longer rate-bins should sample or inte-
grate the PLL’s output.

A5 PD Implementations.

iA 5.1 A single neuron PD. The working range of such a PD is deter-
mmed by the effective widths of its inputs—the maximal delay from an
onset of an EPSP in which, if an EPSP from the other input is added,

the membrane voltage will cross the threshold For similar inputs whose
(EPSP amplitude)/(threshold distance) =

= tIn(A/(1 - A)). (A.29) 5

As"suming t = 10 ms is the decay time constant, if A = 0.8, the working
raﬁge (Ty) is almost 14 ms, and if A = 0.9, itisabout22 ms. .
\

1
A.5.2 Population PDs. Within the working range of the ePLL (Ty; see
Figure 4d),

Ra(n + 1) = Rmax + kalno(n) — ni(m)], k; > 0. (A.30) L{‘\)
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Since g, is monotonic decreasing, G < 0 and the basic algorithm can be
implemented straightforwardly by the circuit denoted by the dashed lines
in Figure 3a. With the PD implementation of Figure 4d, the average delay is

AD =T, — Ti — Rmax/ k- (A.31)
Within the working range of the iPLL (Ty;, see Figure 44),
Ry +1) = Rmax — kalno(n) — ni(m)], ks > 0. (A32)

In this case, G < 0 because of the INH that are added to the loop (see Fig-
ure 3a, solid lines). The average delay for the Figure 4d iPLL implementation
is

AD = T, — T, + Rnax/ka. (A.33)

The PLL’s output, in both the excitatory and inhibitory implementations, is
a population output.

A.6 Tactile Signals. Itis assumed, for simplicity, that for any given scan-
ning direction, all ridges have negligible widths. Textures consisting of a
collection of such ridges can be described, along any one-dimensional di-
rection, in a discrete form by

N
w (@) =Y AmUlx - &m), (A39)

n=0

where U(x’) describes a single ridge at ¥’ = 0 with a unit height, A,(n) is the
height of the nth ridge, and & (n) describes the location of the nth ridge,

() = £(0) +nX, + Pi(n) = £0) + nX, + Y pi();
=0

Gi(n) = X, +p,(n), (A.35)

where X, is the average spatial period, P,(n) is the absolute modulation of
this period for the nth ridge, p;(n) is the cycle modulation, and G;(n) is the
inter-ridge-interval (see section A.1). If a mechanoreceptor response is 1:1,
then for a constant finger velocity, V, the sensory transformation is simply

m(n) = &m)/V, n(0) = &(©0) =0, (A.36)
and similar relationships hold for the signals’ components:

T,=X,/V; Ln)=Gm/V; mm) =pm/V. (A37)
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A.7 Tactile Decoding. With ideal PLLs, minimal rate bins (= T;) and
constant finger velocity, the two output components (see equations A.28
and A.37) are,

Rae(®) = ga(Te = X,()/ V(t) + @) (A.38)
N-1 L
Rac(®) = — ) _[galpi(n — 1)/ V(H)R(t — nTy)] (A39)
n=0

where &, is an implementation-specific delay.

A.8 Automatic Velocity Control. Suppose the desired working point is
Tew; then the requirement is that

XV =T, dx= Vi, a0 B
and
V) =X,/ Tew (A.41) 3

is the finger velocity that the AVC should produce. The AVC is a servo-
regulating loop (see Figure 10) whose controlled variable, T;(t), should be
kept constant. The loop equations are:

V() = &v(Rmax — Ryc () + Vother (A.42) g
Ric(®) = g (T, (t) — T) (A.43) Lf

where g, and g, are the PLL’s and VC’s transfer functions, respectively

(see Figure 10b), Rmax is the maximal possible Ry (f), Voner is the velocity

additive component caused by the “other velocity control,” and T, is the

PLL’s intrinsic frequency (see appendix A.2).

Acknowledgments

I'thank S. Serulnik and M. Zacksenhouse for extensive and illuminating dis-
cussions on phase-locked loops; A. Aertsen, M. Ahissar, D. Blake, T. Flash,
K. O. Johnson, D. Shoham, A. Treves, S. Ullman, and several anonymous
referees for their helpful comments on previous versions of this article;
and B. Schick for reviewing the manuscript. This work was supported by
the Alon Foundation, Israel; the Minna-James-Heineman Foundation, Ger-
many; and grant 93-198 from the Umted States-Israel Binational Science
Foundation, Jerusalem, Israel.

Copyrlght © 2001 AII nghts Reserved



A

644 Ehud Ahissar
Note added in proof: :

Recently we found that the behavior of cortical oscillators in the barrel
cortices of anesthetized rats and guinea pigs confirms predictions a2 and
a5. Also, the behavior of multi-units at the thalamic recipient layers of these
cortices is consistent with predictions a5 (under the assumption of AND-like
PD operation) and a6 (Ahissar, E., Haidarliu, S., & Zacksenhouse, M. (1997)
“Decoding temporally encoded sensory input by cortical oscillations and
thalamic phase comparators.” Proc. Natl. Acad. Sci. USA. 94:11633-11638).
Note also that the results of Nicolelis et al. (1995) confirm prediction a3.
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Dynamic link matching is a self-organizing topographic mapping be-
tween a template image and a data image. The mapping tends to be con-
tinuous, linking two points sharing similar local features, which, as a
result, can lead to its deformation to some degree. In analyzing such de-
formation mathematically, we reduced the model equationito a phase
equation, which enabled us to clarify the principles of the deformation
process and the relationship between high-dimensional models and low-
dimensional ones. We also elucidated the characteristics of the model in
the context of the standard regularization theory.

1 Introduction

Pattern recognition invariant to deformation or transformation can be per-
formed by dynamic link matching (DLM) (Konen & von der Malsburg,
1993). DLM specifies a flexible match between a template pattern and a
data pattern, where local features in the data pattern have to be matched
with their counterparts in the template pattern. DLM is based on the model
of a self-organizing topographic map with a weak tendency to link two
points sharing similar features. Since the self-organizing map has a kind
of elasticity, the map tends to resemble closely the identity map, résisting
disturbances. DLM shares this characteristic with the self-organizing map
but will also generally link two points of similar local features, causing map
deformation to some extent.

DLM has been applied effectively to some engineering examples (Lades
et al,, 1993; Bienenstock & Doursat, 1994), but no mathematical analysis has
yet been made. Therefore, we propose a mathematically tractable model
based on a system of local excitation. We reduce a model equation to a phase
equation (Ermentrout, 1981), which gives us a mathematical understanding
of the principle of the flexible matching process.

DLM can be classified into two types. One, a high-dimensional represen-
tation (Bienenstock & von der Malsburg, 1987; Konen & von der Malsburg,
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1993; Konen, Maurer, & von der Malsburg, 1994), is the map expressed by
the synaptic weight distribution on the product space of the two image
spaces. The other, a low-dimensional representation, corresponds directly
to the graph matching (Lades et al., 1993; Bienenstock & Doursat, 1994). In
this case, the map is expressed by reference vectors as in Kohonen’s model
(Kohonen, 1982).

Matching two images is, in general, an ill-posed problem. Information is
insufficient when matching local features in a data image with their counter-
parts in a template image. By introducing topography constraints, however,
this deficiency can be addressed in the definition of the problem. The po-
tential of the phase equation in our model is equivalent to the cost function
in standard regularization theories (Poggio, Torre, & Koch, 1985), since it
consists of a stabilizer (a topography constraint) and a data-fitting term (to
match local features in the data image with their counterparts in the tem-
plate image). Our theory bridges the gap between low-dimensional rep-
resentations and high-dimensional representations, because we start from
a high-dimensional model equation and derive a low-dimensional phase
equation.

2 Model Description

Figure 1a shows a schematic diagram of our model. The problem is how to
build a flexible match between a one-dimensional data image and a one-
dimensional template image. The input patterns are feature vector functions
defined on F; and F,. Here, we simply assume F; = F; = Rto avoid bound-
ary effects. However, our analysis is useful in understanding models with
boundary conditions, because at points far from the boundary the boundary
effect is negligible and is not important for the deformation process of the
mapping, which is the theme of this article. The feature vectors are defined
as1(r1), 1 € F1and I(r2), r2 € F». I and I are expected to be equal up to
a certain deformed topographic transformation. The system has to match
local features in the data image with their counterparts in the template im-
age, and thus produce a topographic transformation from Fy to F2. The map
is expressed by the synaptic weight distribution w(r1, r2) on F1 x F3.
|O~,“ The model equation is

%w(rl, 12, B = —w + Kfw) + &s(r1, 12), 2.1
kfw = [ [ dnankenmf o - ),

where |¢| << 1 and s(r1, r2) is the local similarity between I1(r1) and Lx(r2),

s(r1, 12) = v(l1(r1), I2(r2)). 22)

This equation consists of two parts. The first part, 2w —w+Kfw), is
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Figure 1: (a) Schematic diagram of our model. I; and I, are equal up to a certain
deformed topographic transformation. The system has to produce a topographic
mapping from F; to F. The mapping is expressed by the synaptic weight dis-
tribution w(ry, r2) on F; x Fj. (b) Schematic diagram of a topographic mapping
(an equilibrium solution). This solution is a bank on a diagonal line.

the self-organizing part, which conserves the topography. The second part,
€?s(r1, r2), is a perturbation term. This part links two points assigned similar
features in I) and I. Here we examine the case where the perturbation is
very weak.

3 Self-Organizing Part

Let us begin with the self-organizing part,

%w(rl, r, b =-w+ Kfw). (3.1
The integration kernel k in the linear operator K is of a two-dimensional
isotropic Mexican hat type, and f is a sigmoidal function with f'(x) > 0
(monotonically increasing function).

If all of the parameters are set appropriately, we can make the dynamics
have a stable equilibrium solution of the following form:

' 1
w(ry, r2,t) =y (E(rz - 7'1)) .

This solution is a bank on a diagonal line as shown in Figure 1b. Figures 2a
and 2b shows an example of a bank and its one-dimensional cross-section
obfained by computer simulation with another coordinate system (see equa-
tion 3.3). Some work (Takeuchi & Amari, 1979; Amari, 1980; Haussler & von
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Figure 2: (a) Rotated equilibrium solution obtained by computer simulation.
(b) One-dimensional cross-section of the equilibrium solution. (c) Schematic di-
agram of a deformed solution by perturbation. We can assume that this solution
does not vary along the x-axis within a small region.

der Malsburg, 1983) has analytically shown the stability of equilibrium so-
lutions of topographic corinections. In section 6, we discuss the necessary
condition for the stability of the solution when f(x) is a step function. It is
not easy to analyze its stability mathematically. However, in this article, the
ly stability is verified by computer simulation.
94, b K 1 r € Fp is fixed, w is a function in the domain F,. In such a case, we can
. define the topographic mapping p as

p: F] i d Fz ’))
r — rzlarg max,, w.

In our system, the basin of attraction for a single bank solution (see Fig-
ure 2a) is small because k is localized and isotropic. Thus, we set a single
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bank pattern as the initial state; otherwise, a spotty pattern would be formed.
This single bank solution is stable against small perturbations, as verified
by computer simulation. This is because of the sigmoidal function, f, which
suppresses all of the perturbations under its threshold # and makes our
system stable around w = 0.

In DLV, it is essential that the self-organizing dynamics have a bank-
shaped stable equilibrium solution on a diagonal line (a topographic map).
It is possible to complicate the model to avoid the formation of stripe or
hexagon patterns with long-range synaptic competition. More complicated
models, however, would lose the mathematical simplicity, and some could
not be analyzed mathematically.

Another merit of a difference of gaussian (DOG) kernel is that its ro-
tation symmetricity makes the mapping solution very flexible and much
more expedient with magnification, contraction, and deformation. Many
DLM models are not so strong against magnification and contraction. We
have compared commonly used anisotropic kernels and DOG kernels by
computer simulation and have found that a DOG kernel can make a model
much more tolerant of deformation (deformation involving a local magnifi-
cation and contraction). A theory on deformation for DLM therefore needs
to be formed and verified by computer simulation; the use of a DOG kernel
is very appropriate.

Equation 3.1 is popular as a system of local excitation in 2D neural fields.
Furthermore, this form of dynamics can be represented by a simplified

model for Hebbian learning between two 1D neural fields. The lateral con-
nection of each 1D neural field consists of short-range excitatory and long-

range inhibitory connections. Interlayer synaptic weight w increases be-
tween excited cells as in Hebbian learning. When some synapse is enforced,
other synaptic connections nearby decrease due to synaptic competition,
since both neurons absorb the limited nutrition available from nearby cells.
f represents the nonlinearity of the synapse.

Through simple mathematical manipulation, equation 3.1 can be ex-
pressed in terms of another coordinate system,

%w(x, v, D) =-w+Kfw), (3.2)
ICf(w):/_c<> /:oodx’dy’k(f,y’)f(w(x—x’,y—y’)), i
X\ _ 1/«/5 1/«/5 r }

(y)—(_wz wi)(rz)’ G3) |

where kernel k is not changed by the transformation of a coordinate because
of its isotropy. The equilibrium solution is rewritten as:

wix,y, ) = Y ). 6y 9
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*

Figure 2a shows an example of an equilibrium solution obtained by numer-
ical calculation with equation 3.2.

Equation 3.2 is invariant to spatial shifts along the y-axis. Therefore,
¥ (y — ) is also an equilibrium solution with any constant 6. 6 stands for
the phase of the solution. If we define ¥(0) as the maximum value of ¢, 0
represents the center of the receptive field, which can be considered as the
reference vector, for example, as in Kohonen’s (1982) model.

Here, we estimate the stability against the fluctuation constant about the
x-axis. Substituting w(x, y,t) = ¥ (y — 0) + eu(y, t) into equation 3.2 and
linearizing around ¢ = 0, we obtain the following equation:

ou
3‘{ = Egu,
Lo = —1+Ky(f Wy —6)-). 3.5)

Here, Lo denotes a linear operator, and K, is the following 1D convolution
operator in the direction y:

Ko, y) = / R oy — ),

—00

-IE(y) = f ® dxk(x, y). -

All of the eigenvalues of Ly are nonpositive since the equilibrium solution
¥ (y—0) is stable. However, there is an eigenvalue of 0 with the eigenfunction
¥'(y — 0) because —y + Kf(¥) = 0. This eigenfunction corresponds to
a small spatial shift of ¥ in the direction of y, because ¥(y — 0 +¢&) ~
Yy — 0) + e¥/(y — 6). We assume no other eigenfunctions exist for the
eigenvalue of 0, that is,

kerLy = span{y’(y — 6)). (3.6)

This assumption is equivalent to the waveform stability of ¥ (y — 6).
This means that although the equilibrium solution is irresistant to a spatial
shift, it can maintain its waveform. The waveform stability of our solution is
unproved, but it can be easily verified by computer simulation. The stability
of modes with eigenvalue 0is dramatically changed by a small perturbation.
If other modes with eigenvalue 0 were to exist, the waveform would be
broken.

Even with a boundary, the solution maintains an approximate waveform
stability as long as the solution decreases toward zero in both directions and
is sufficiently small at the boundary points.
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4 Perturbation

Here, we consider the perturbed model,

S0y, D) = —w + Kf@) + 6565, ), @1

where the local similarity in equation 2.2 is transformed into s(x, y) using
equation 3.3. Since ¢ is very small, the self-organizing part is only weakly
affected by the image data. The equilibrium solution 3.4 is gently deformed
by the effect of the perturbation. We assume that the deformed solution can
be expressed as

w(x, Y, t) = Yy — 6(&, T) + em1 (&, ¥, ©) + 2u2(€, ¥, 1), 4.2)

where & = ex, 7 = ¢?t. £ isa large space variable, and t denotes a slow
time variable. This solution can be regarded as constant with respect tox
within a tight range about the x-axis as shown in Figure 2¢. eu; and e2up are
fluctuations caused by the effects of the ;)erturba’aon

Since the deformation is caused by &“s in the neighborhood of an equi-
librium solution for an unperturbed system, the order of this deformation
process is equal to the order of the perturbation, that is, O(¢?). In order to
treat this small phenomenon in the theory, it is necessary to shrink time ¢

and space x. If we set § = ex and t = £%t, we can derive the following O(s?)
terms:

3 ,9 2,3
—=g— and — =g°—0.
at %ot a2 = ¢ 92 3

Thus, we can derive a diffusion term to describe the resistance against de-
formation. However, if x and ¢ shrink with the same order, we cannot derive
a spatial derivatives term (the 8/3x term is erased in the case of our system;
see appendix A), that is, the deformation process is neglected in the theory,
which is equivalent to a previous analysis (Aonishi, Kurata, & Mito, 1997).

From this assumption, we can derive the following equations (see ap-
pendix A):

0=~y + K, f(¥) + eLour + £ (Loup — mp), (4.3)
a6
my=—y'(y— 9)—
30 1 3%
- 3G~ 0’(35) +3520 =050

- E’Cyf "Wy — 0))ur® — s(x, y),
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Gi) = f_ " /_ ” Wk, )
< (F -y G-+ oG-y -y,
Gaty) = f_ > f_ " ik, Y By — YW — ).

Here, we cannot neglect the O(sz) term, since the order of the perturbation
is O(g?). The coefficient of £° satisfies 0 from the equilibrium condition.
Therefore, equation 4.3 can be reduced as follows:

0= Louy + & (Lot = m3). (4.4)

This equation demonstrates that Lou; = O(¢). Therefore, from equation 3.6,
we can obtain #; in the following form,

w =ay’'(y—0) + ey, 4.5)
where &7 is a higher-order fluctuation in 43, and « is an arbitrary constant,
since Louy = aLo¥'(y — 0) + Lot = eLyUy = O(¢). Substituting this into

equation 4.4 and neglecting higher-order terms, we obtain

Ly iy +uz) —my =0. (4.6)

30
my = —w’(y ~0)5-

2 0
- Eozzlcy 'y — 0¥ (y — 6)°. — s(x, y).

Here, we can erase fluctuation term Ly (%1 + #2) in equation 4.6 using the fol-
lowing averaging manipulation. We average equation 4.6 using the weight

fy-wy-9),
f_ : ayf (Y @y — Y (y — 6)m
= f_ : dyf' (W (y — )Y (y — 6) Lo (1 + 12)
= _: dyf Wy —0)) (—¥'(y — 6) + Ky¢'(y — 0)) (1 + u2)

= [ dyf (Y (y — ) Loy (y — 0) (1 + u2) .
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1

From equation 3.6, Ly¥'(y — ) = 0. Thus, we can obtain

[t wa-owy-om=o. an |

Therefore, we can erase the fluctuation term.
(o\ Since k(x, y) is an even function, the model is symmetrical about the y-
4 xis. Thus, we can expect stationary solution ¥ (y) to be an even function.
If we have an uneven stationary solution in the symmetric model, almost
all small symmetrical perturbation on the model will transform it into a
traveling wave solution (see appendix B), for there is no generic reason for
it to stand still. In other words, uneven stationary solutions in symmetric
models are structurally unstable. By computer simulation, we could verify
that y(y) is an even stationary solution, as shown in Figure 2b. Thus y'(y)
and f'(y(¥))¥'(y) are odd functions, Gi1(y) is an even function, and Gx()
is an odd function. Eliminating some terms by averaging with the weight
F Wy —60)¥'(y — 6), we obtain the following phase equation: 1
\

3¢, 1) _dd%E,r)  a [® i
‘o —2 2 T f_ LUy —ons/e.y). (4-‘8)@, ~

where
« Ly

C=/_ Y GOW' V' W), = f_ _ B GO D). 5

From variational principles, phase equation 4.8 has the following potential

V:
_d [, (866, 1))?
=g« (%)
—1/ @f:@mw@—mmyaw. 49) Lf

cJ-

This equation consists of two parts: one for smoothing and the other for data
fitting. Thus, it is obvious how it is analogous to the standard regularization
theory. The data-fitting term derives the mapping so that f(y (y — 6)) and
s(x, y) have maximal covariance, giving the mapping the tendency to con-
nect two points sharing similar local features. It should also be noted that 6
is alow-dimensional expression of weak deformation. The low-dimensional
representation of mapping p is obtained from 8 as the solution of the fol-
lowing self-consistent equation:

p: F] - Fy
non|gn-m=6(Hm+m). K

A
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@
5 Parameters
We used the following convolution kernel,
»
1 24y 1 24y
k ’ = -3 5 | T - ’
*.y) 012 P ( 2012 022 P 2022 l
and the sigmoidal function
1 ’ ‘
f® = oppa—h)’ s

where 01 = 0.25, o» = 0.33, 8 = 10, and k = 0.36. In following simulations,
we set ¢ = 0.2

6 Stability of the Solution

With the 8 — oo limit, f(x) tends to form a step function:

1 x>h
f(x)={0 xsh-

In this case, we can simply derive the following two conditions for the
stability of ¥(y). One is a one-dimensional stability condition and is equiv-
alent to the stability condition for local excitation in one-dimensional neural
fields (Amari, 1977). The other is a two-dimensional stability condition and
is needed to keep the solution straight, as in Figure 2a. A stable solution
must satisfy both conditions.

One-dimensional stability is a necessary condition for preventing per-
turbations that are constant with respect to x, thatis, w(x, y,t) = ¥ (y — ) +
eu(y, t). Let ¢ (y) > h, thatis, f(¥(y)) = 1 in the region [—o0, o0] x [, 51
¥ (y) exists if a satisfies

K@) =h, 6.1)
K@) = / ” dx f ’ dyk(x, )
—00 0

B a 1 y2 1 yZ
_VZnL dy (G—lexp (—T.'lz) -—;Z'QXP (—E'OTZZ‘ .
One-dimensional stability in this case,

K@) <0, . (6.2)

is a necessary condition for the stability of the solution ¥ (). The function
K(a) is depicted in Figure 3a, If 0 < h < K(@max), condition 6.1 allows two
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Figure 4: (a) Example of s(x, y). (b) Deformed equilibrium solution by pertur-
bation with the local similarity function shown in a. (c) Ridge of s(x,'y) and that
of deformed equilibrium solution (b), together with a theoretical curve from
equation 4.8. (d) Frequency responses to a sinusoidal ridge of s(x, y) (the ampli-
tude is 0.4). (e,f) The time-dependent behavior of 6. Time interval between two
curves is 5.6 in 7. d = 0.019453, ¢ = 5.034132.
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Figure 5: Two pieces of real data and the local similarity s(r1, r2) between the
data, together with a simulation result and a theoretical curve. We also show
syllables for speech data.

Figure 5 showﬁ‘two pieces of real data and the local similarity s(ry, 2) be-
tween the data.'We performed computer simulations by numerical calcu-
lation with equation 4.1 with the periodic boundary condition, as in the
former simulations. On the local similarity s(r1, r2) in Figure 5, we superim-
posed the simulation result (the ridge of the deformed equilibrium solution)
and a theoretical curve, together with the starting points of the speech data
syllables. Our system could match between the points in I; and their coun-
terparts in I. The theory strongly correlated with a behavior of the system.

5]
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: i,
expect the stability conditions with infinite g to be applied in establishing
stability at large values of 8. In the case of & = 0.36, the solution satisfies
both stability conditions.

7 Comi)uter Simulation

In numérical simulations to verify our theoretical results, computer simula-
tion was performed for equation 4.1 with the periodic boundary condition.
Here, the artificial local similarity s(x, y) was set as shown in Figure 4a.

We set the initial state w(x, y, 0) = ¥ (y) in Figure 2a. In the following sim-"

ulations, d = 0.019453 and ¢ = 5.034132. Figure 4b shows the deformed

equilibrium solution by perturbation with the local sumlanty in Figure 4a.

In Flgure 4c we show 6(x), the ridge of the deformed equilibrium solution

4b, together with a theoretical curve from equation 4.8.

& We also investigated spatial frequency responses of the system. The sim-
ilarity was assumed to be a function with a sinusoidal ridge. The amplitude
of the ndge was fixed to 0.4. Figure 4d shows the amplitude of the solution
wave versus various frequencies of similarity waves. The dotted curve in
the sanl‘e figure indicates the theory from phase equation 4.8. According
to Figure 4d, the theory strongly conforms to the simulation results when
f < 0.3,butwhen f > 0.3 our theory breaks down. The solutions (which ini-
tially have a continuous ridge) in the range 0f 0.3 < f < 0.4break into blobs,
and thus our theory ceases to be valid. The solutions when f > 4.0keep the
continupus ridge, but the assumption that the solution varies gently along

.the x-axis is no longer satisfied.

&B Figures 4e and 4f shows the time-dependent behavior of 6. Our theory

provides a good description of the simulation data in the time scale.

)

8 Application to Real Data

Our design is very simple s0 as to be mathematically tractable; however,
this creates limitations in its application. Even so, we have provided one
example of an application to real data. From real speech data, we extracted
power spectra at each time with wavelet filters for 20 different frequencies
corresponding to Fourier transforms limited by a gaussian window in the
time domain. Then the 20-dimensional power spectrum data for each time
were assigned to a vector ;(r;). In this simulation, I; and I, were extracted
from twp different pieces of data, which were pronounced “neuron” by the
same ]abanese speaker. Here, 7; denotes the time. All parameters were set
as in the former simulations, except £2 = 0.045. We used the following local

similarity function:
v(I1(r1), Ir(r2)) = 1.0 — |I1(r1) — L(r)I. (8.1)
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Figure 3: (a) Schematic diagram of K(4). Only a is a stable solution; 4’ is an
unstable fixed point. (b) Diffusing coefficient d with the g — oo limit. The
vertical axis corresponds to d/", and the horizontal axis corresponds to arange
of solutions. We can find a bifurcation point of the stability parameterized by a.
Here, all parameters are set as in section 5. -

solutions: 2 and &' in Figure 3a. However, condition 6.2 permits only 2 as a
stable solution, while @’ becomes an unstable fixed point.

Obviously, d > 0 in equation 4.8 is a necessary condition for the stability
of the solution. This is a two-dimensional stability condition. In the unstable
case, our phase equation is no longer valid.

In the case of a step function, we can explicitly derive the diffusing coef-
ficient,

2
d = 2421y (a/2) (61 (1 —exp (—%2))

a(ien(- ) e

where a is the size of the connected region in which the condition f(¥(y)) =
1 holds, as previously discussed for one-dimensional stability. Figure 3b
shows the diffusion coefficient d/v¥'(a/ 2)% versus the range 4. We can find a
critical point where the sign of d changes, that is, a bifurcation point of
stability parameterized by a.

Figures 3a and 3b shows that a region 4 exists in which both conditions
are satisfied. Here, all parameters are set as in section 5, except for 8. We can \
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9 Conclusion

In this article, we proposed mathematically tractable DLM, a topographic
mapping formed between a template image and a data image. The mapping
is continuous but tends to link two points sharing similar local features,
which can result in some degree of deformation. To analyze such deforma-
tion mathematically, we derived a phase equation from a model equation.
We demonstrated that the theory complies with the behavior of the system
using computer simulations.

DLM can be classified into two types. One is a high-dimensional repre-
sentation. Equation 2.1 corresponds to this type since the map is expressed
by a synaptic weight distribution on the product space of two image spaces.
The other is a low-dimensional representation. The potential (see equa-
tion 4.9) is the same as in the cost function of standard regularization the-
ories, since it consists of a stabilizer (a topography constraint) and a data-
fitting term (to match local features in the data image with their counterparts
in the template image). Our theory bridges the gap between these two rep-
resentations and gives us a mathematical understanding of the principle
behind the flexible matching process.

Low-dimensional versions of DLM require both a much lower compu-
tational time and less memory than do high-dimensional versions of DLM.
We used an example to demonstrate that these two versions are equivalent
in the neighborhood of the identity map. However, some high-dimensional
models (Konen & von der Malsburg, 1993; Konen et al., 1994) have a very
wide basin for the successful matchings they make. With such models, we
can start from constantly distributed connections, but we have to set low-
dimensional models to some mapping to start them. If this “prejudice” is
too far from correct matching, then we cannot reach it.

Appendix A

Substituting equation 4.2 into equation 4.1, we obtain

VY~ 0, ) = —Y(y =) e — sy
+Kf(p(y - 6, 1) s
+eK (f (b @y - 8¢, D)m(E, 9. 1)
+ K (f (ly — 6, )28, y, 7))

6‘2 2
+ 5K (f -0 mE v, o)

+ ezs(x, )]
+ O(%). (A1)
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b

Here, we can represent the K (- - -) term in equation A.1 as follows:

/ j: dx'dy’k(x’, y)u(e(x —x), y — ¥)
- f ” dx’-i—k (%y) wex—2,y — ). (A2)

Aseg -0, %k(-’sf, y) tends to the following function,
L = vamsw [ Lep (L) - Leop (-2 (A3)
e ¢ y= o1 P 2012 a2 P 2022 ) ’

Thus, we can expand u(ex — ¥, y — ) into a polynomial around x’ = 0 as
follows:

/oo foodx’dy’%k(x;,y')u(ex—x’,y—y’)
= / " oodx’dy’%k(’—;-,}/)

72
x | u(ex,y —y) — ux(ex,y —y)x' +uxx(ex,y-y’)fz— +-- ]
L

[e.2] o0
= / dx'dy'k(x,y)

82x’2
x | u(ex, y—y') — ux(ex, y—y)ex’ + uxe(ex, y_y)__i_ 4o

.

= / dy’ [Mo(t/)u(sx, y—y) — eMiy)us(ex, y — )

2
+ %Mz(y')uxx(sx, y—y)+-- ] , (A4

where M, (y) is the moment of kx, y),
o0
Mn(y) = f dx'k(d, ™. (A.5)

If n is odd, My (y) =0, since k is even w.r.t. x.
Thus, the K (- - -) term in equation A.1 can be expanded as follows:

Ky (y -0, 1) /)Bjﬂ
- f f Ak, Y)Y — o —6(ex, ) ‘.
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+ e f i dxXay'k(x', y')x
x fy—y —0Ex, ONY' -y —0(ex, 7))

30(ex, ) | €2 [® [ 2
X = +-i-f_°°-/;°odx’d3/k(x’,y)x

x (f(W@y—y ~6x, V" (y -y — 0(ex, 7))

+ £y~ ~0x G-y —Gex ) (Lo f))z |
- -825 f i f ” A dy'k(x, y)x'?
X f’(://z;— ;/oi 0(ex, ONY'(y ~y — 6(ex, 7))

e = 32:((;;;) +0() i (A6)

eK(f (W —0E ), y, )
e[ [ atayw.)f Gy - —0@x Diexy -y o

_ e / | axayke, ¥ (F -y - 6ex, o)
3

X ot (e, - V.0 - 'y —y —0(ex, 1))

x ¥'(y —y — 6(ex, T))u1(ex, y-v, )BG(sx r))

dex
+ 0% A7) oy
K (f Wy -0 D, y, 1))

62/_ /: dxXdyk(x, Y ) f Wy — ¥ — O(ex, ©))uz(ex, y — ', 1)

I + O A8

e /4 2

S (-0 .y, ) 3

- % f f A dyk(, )

x f'Yly—y —0(x, ))ur(ex,y — v, 1)° + O
(A9)

Erasing odd moments and neglecting higher-order terms, we derive
equation 4.3.

Copyrlght © 2001 AII nghts Reserved



668 Toru Aonishi and Koji Kurata
2

Appendix B

We show that an uneven stationary solution in the symmetric model (see
equation 3.2) is transformed into a traveling wave solution by some small
symmetrical perturbation. Here, we add small constant perturbation &s to
equation 3.2 as follows:

%w(x, ¥, t) = —w+ Kf(w) +¢s, (B.1)

Solutions in the neighborhood of an equilibrium solution for an unperturbed
system can be represented as

wx, y, ) =¥y —6(1)) +euy, ) (B.2)

where 7 = &t. Substituting equation B.2 into B.1, expanding a polynomial
around & = 0, and neglecting higher-order terms, we obtain

¥y — O(t))%g = Lou +s5. (B3)

Averaging equation B.3 using the weight f'(¥ (y—6))¥'(y—6) as in equation
4.7, we obtain the following phase equation:

9
- =4, (B4)

o= [T arwoworve. d=s[ afoowe. @9

If ¥ (y) is uneven, d # 0. Therefore, an uneven stationary solution is trans-
formed into a traveling wave solution by a constant perturbation.
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Computational models of neural map formation can be considered on
at least three different levels of abstraction: detailed models including
neural activity dynamics, weight dynamics that abstract from the neural
activity dynamics by an adiabatic approximation, and constrained opti-
mization from which equations governing weight dynamics can be de-
rived. Constrained optimization uses an objective function, from which
a weight growth rule can be derived as a gradient flow, and some con-
straints, from which normalization rules are derived. In this article, we
present an example of how an optimization problem can be derived from
detailed nonlinear neural dynamics. A systematic investigation reveals
how different weight dynamics introduced previously can be derived
from two types of objective function terms and two types of constraints.
This includes dynamic link matching as a special case of neural map for-
mation. We focus in particular on the role of coordinate transformations to
derive different weight dynamics from the same optimization problem.
Several examples illustrate how the constrained optimization framework
can help in understanding, generating, and comparing different models
of neural map formation. The techniques used in this analysis may also
be useful in investigating other types of neural dynamics.

1 Introduction

Neural maps are an important motif in the structural organization of the
brain. The best-studied maps are those in the early visual system. For exam-
ple, the retinotectal map connects a two-dimensional array of ganglion cells
in the retina to a corresponding map of the visual field in the optic tectum
of vertebrates in a neighborhood-preserving fashion. These are called to-
pographic maps. The map from the lateral geniculate nucleus (LGN) to the
primary visual cortex (V1) is more complex because the inputs coming from

Neural Computation 10,671-716 (1998)  © 1998 Massachusetts Institute of Technology
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*

Figure 1: Goal of neural map formaﬁ(\m: The initially random all-to-all connec-
tivity self-organizes into an orderly connectivity that appropriately reflects the
correlations within the input stimuli and the induced correlations within the
output layer. The output correlations also depend on the connectivity within
the output layer. :

¢

LGN include signals from both eyes and are unoriented, but most cells in
V1 are tuned for orientation, an emergent property. Neurons with preferred
orientation and ocular dominance in area V1 form a columnar structure,
where neurons responding to the same eye or the same orientation tend
to be neighbors. Other neural maps are formed in the somatosensory, the
auditory, and the motor systems. All neural maps connect an input layer,
possibly divided into different parts (e.g., left and right eye), to an output
layer. Each neuron in the output layer can potentially receive input from
all neurons in the input layer (here we ignore the limits imposed by re-
stricted axonal arborization and dendritic extension). However, particular
receptive fields develop due to a combination of genetically determined and
activity-driven mechanisms for self-organization. Although cortical maps
have many feedback projections (for example, from area V1 back to the
LGN), these are disregarded in most models of map formation and will not
be considered here.

The goal of neural map formation is to self-organize from an initial ran-
dom all-to-all connectivity a regular pattern of connectivity, as in Figure 1,
for the purpose of producing a representation of the input on the output
layer that is of further use to the system. The development of the structure
depends on the architecture, the lateral connectivity, the initial conditions,

. and the weight dynamics, including growth rule and normalization rules.
CJ’ tq M The first model of map formation, introduced by von der Malsburg
(1973), was for a small patch of retina stimulated with bars of different
orientation. The model self-organized orientation columns, with neighbor-
ing neurons having receptive fields tuned to similar orientation. This model
already included all the crucial ingredients important for map formation:
(1) characteristic correlations within the stimulus patterns, (2) lateral inter-
actions within the output layer, inducing characteristic correlations there
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as well, (3) Hebbian weight modification, and (4) competition between
synapses by weight normalization. Many similar models have been pro-
posed since then for different types of map formation (see Erwin, Ober-
mayer, & Schulten, 1995; Swindale, 1996; and Table 2 for examples). We
do ot consider models that are based on chemical markers (e.g., von der
Malsburg & Willshaw, 1977). Although they may be conceptionally similar
to those based on neural activities, they can differ significantly in the de-
tailed mathematical formulation. Nor do we consider in detail models that
treat the input layer as a low-dimensional space, say two-dimensional for
the retina, from which input vectors are drawn (e. 8., Kohonen, 1982, but see
section 6.8). The output neurons then receive only two synapses per neuron,
one for each input dimension.

The dynamiclink matching model (e.g., Bienenstock & von der Malsburg,
1987; Konen, Maurer, & von der Malsburg, 1994) is a form of neural map
formation that has been developed for pattern recognition. It is mathemati-
cally similar to the self-organization of retinotectal projections; in addition,
each neuron has a visual feature attached, so that a neural layer can be
considered as a labeled graph representing a visual pattern. Each synapse
has associated with it an individual value, which affects the dynamics and
expresses the similarity between the features of connected neurons. The
self-organization process then not only tends to generate a neighborhood
preserving map, it also tends to connect neurons having similar features.
If the two layers represent similar patterns, the map formation dynamics
finds the correct feature correspondences and connects the corresponding
neurons.

Models of map formation have been investigated by analysis (e.g., Amari,
1980; Haussler & von der Malsburg, 1983) and computer simulations. An
important tool for both methods is the objective function (or energy func-
tion) from which the dynamics can be generated as a gradient flow. The
objective value (or energy) can be used to estimate which weight config-
urations would be more likely to arise from the dynamics (e.g., MacKay
& Mﬂlen 1990). In computer simulations, the objective function is maxi-
mizo;éd (or the energy function is minimized) numerically in order to find
stable solutions of the dynamics (e. g., Linsker, 1986; Bienenstock & von der
Malsburg, 1987).

Objective functions, which can also serve as a Lyapunov function, have
many advantages. First, the existence of an objective function guarantees
that the dynamics does not have limit cycles or chaotic attractors as solu-
tions. Second, an objective function often provides more direct and intuitive
insight into the behavior of a dynamics, and the effects of each term can
be understood more easily. Third, an objective function allows additional
mathematical tools to be used to analyze the system, such as methods from
statistical physics. Finally, an objective function provides connections to
more abstract models, such as spin systems, which have been studied in
depth.
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Although objective functions have been used before in the context of
neural map formation, they have not yet been investigated systematically.
The goal of this article is to derive objective functions for a wide variety of
models. Although growth rules can be derived from objective functions as
gradient flows, normalization rules are derived from constraints by various
methods. Thus, objective functions and constraints have to be considered
in conjunction and form a constrained optimization problem. We show that
although two models may differ in the formulation of their dynamics, they
may be derived from the same constrained optimization problem, thus pro-
viding a unifying framework for the two models. The equivalence between
different dynamics is revealed by coordinate transformations. A major fo-
cus of this article is therefore on the effects of coordinate transformations
on weight growth rules and normalization rules.

1.1 Model Architecture. The general architecture considered here con-
sists of two layers of neurons, an input and an output layer, as in Figure 2.
(We use the term layer for a population of neurons without assuming a
particular geometry.) Input neurons are indicated by p (retina) and output
neurons by 7 (tectum); the index v can indicate a neuron in either layer.
Neural activities are indicated by a. Input neurons are connected all-to-all
to output neurons, but there are no connections back to the input layer.
Thus, the dynamics in the input layer is completely independent of the
output layer and can be described by mean activities (,) and correlations
(a,, a,). Effective lateral connections within a layer are denoted by D,y and
D, ; connections projecting from the input to the output layer are denoted
by wy,. The second index always indicates the presynaptic neuron and the
first index the postsynaptic neuron. The lateral connections defined here are
called effective, because they need not correspond to physical connections.
For example, in the input layer, the effective lateral connections represent
the correlations between input neurons regardless of what induced the cor-
relations, D,y = (4,, 7). In the example below, the output layer has short-
term excitatory and long-term inhibitory connections; the effective lateral
connections, however, are only excitatory. The effective lateral connections
thus represent functional properties of the lateral interactions and not the

5% anatomical connectivity itself.

To make the notation simpler, we use the definitions i = {p, 7}, j =
{0, 7'}, Az] = DAy = Deri{apy), and D:] = DipDpy = Diy{ap,a,) in
section 3 and later. We assume symmetric matrices Ay =. Ay and Dy = Dy,
which requires some homogeneity of the architecture, that is, {a,) = (a,),
(ap,apy) = (. 8p),and Dy = Dy

In the next section, a simple model is used to demonstrate the basic
procedure for deriving a constrained optimization problem from detailed
neural dynamics. This procedure has three steps. First, the neural dynamics
is transformed into a weight dynamics, where the induced correlations are
expressed directly in terms of the synaptic weights, thus eliminating neu-
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»

output layer

\

e'e) p’ input layer
[ 4

Figure 2: General architecture: Neurons in the input layer are connected all-to-
all to neurons in the output layer. Each layer has effective lateral connections
D representing functional aspects of the lateral connectivity (e.g., characteristic
correlations). As an example, a path through which activity can propagate from
neuron p to neuron t is shown by solid arrows. Other connections are shown
as dashed arrows.

ral activities from the dynamics by an adiabatic approximation. Second, an
objective function is constructed, which can generate the dynamics of the
growth rule as a gradient flow. Third, the normalization rules need to be
considered and, if possible, derived from constraint functions. The last two
steps depend on each other insofar as growth rule, as well as normaliza-
tion rules, must be inferred under the same coordinate transformation. The
three important aspects of this example—deriving correlations, construct-
ing objective functions, and considering the constraints—are then discussed
in greater detail in the following three sections, respectively. Readers may
skip section 2 and continue directly with these more abstract considerations
beginning in section 3. In section 6, several examples are given for how the
constrained optimization framework can be used to understdnd, generate,
and compare models of neural map formation.

2 Prototypical System

As a concrete example, consider a slightly modified version of the dynamics
proposed by Willshaw and von der Malsburg (1976) for the self-organization
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T i
of a retinotectal map, where the input and output layer correspond to retina
and tectum, respectively. The dynamics is qualitatively described by the
following set of differential equations:

Neural activity dynamics

iy, = —my+ (k*ay), (2.1 |
e =~y + (k*xay). + Zw,,,:apf (2.2
4 ™~
Weight growth rule
Wep = A:8p (2.3) 2,

Weight normalization rules

ifwy, < 0w, =0 24 ¢ }

. 7 1 v
if ;wm’ > 1:wtp = Wyp + E (1 - ;wfp’) for all 14 (2.5) ;49
i

if Y wep > Liwg, = By + A% (1 - Zw,,p> forall T (2.6) Q!
v P v

where m denotes the membrane potential, a, = o(m,) is the mean firing
rate determined by a nonlinear input-output function o, (k * 4,/) indicates
a convolution of the neural activities with the kernel k representing lat-
eral connections with local excitation and global inhibition, @;, indicates
weights as obtained by integrating the differential equations for one time
step, thatis, @, (t+At) = wep () + At Wy, (1), M, is the number of links termi-
nating on output neuron 7, and M, is the number of links originating from
input neuron p. Equations 2.1 and 2.2 govern the neural activity dynamics
on the two layers, equation 2.3 is the growth rule for the synaptic weights,
and equations 2.4-2.6 are the normalization rules that keep the sums over
synaptic weights originating from an input neuron or terminating on an
output neuron equal to 1 and prevent the weights from becoming negative.
Notice that since the discussion is qualitative, we included only the basic
terms and discarded some parameters required to make the system work
properly. One difference from the original model is that subtractive instead
of multiplicative normalization rules are used.

2.1 Correlations. The dynamics within the neural layers is well under-
stood (Amari, 1977; Konen etal., 1994). Local excitation and globalinhibition
lead to the development of a local patch of activity, called a blob. The shape
and size of the blob depend on the kernel k and other parameters of the
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system and can be described by B, if centered on input neuron py and
By, if centered on output neuron 7. The location of the blob depends on
the input, which is assumed to be weak enough that it does not change
the shape of the blob. Assume the input layer receives noise such that the
blob ‘arises with equal probability p(og) = 1/R centered on any of the input
neurons, where R is the number of input neurons. For simplicity we assume
cyclic boundary conditions to avoid boundary effects. The location of the

blob in the output layer, on the other hand, is affected by the input,

ir(pp) = Zwr’p’Bp’pm 2.7)
o

received from the input layer and therefore depends on the position pp of
the blob in the input layer. Only one blob can occur in each layer, and the
two layers need to be reset before new blobs can arise. A sequence of blobs
is required to induce the appropriate correlations.

Konen et al. (1994) have shown that without noise, blobs in the output
layer will arise at location 7y with the largest overlap between input i, (0g)
and the final blob profile B;,,, that is, the location for which Y o Buryiv (00)
is maximal. This winner-take-all behavior makes it difficult to analyze the
system. We therefore make the assumption that in contrast to this determin-
istic dynamics, the blob arises at location p with a probability equal to the
overlap between the input and blob activity,

P(0100) = Y Bermgiv(00) = Y BernyWerBpgo. (28)
z’ t’p'

Assume the blobs are normalized such that 3 pBoypy=1and 3, By =1
and that the connectivity is normalized such that }__, Wy = 1, which is
the case for the system above if the input layer does not have more neurons
than the output layer. This implies > iv(pp) =1and E,o p(rolpo) = 1and
justifies the interpretation of p(|pp) as a probability.

Although it is plausible that such a probabilistic blob location could be
approximated by noise in the output layer, it is difficult to develop a concrete
model. Fora similar but more algorithmic activity model (Obermayer, Ritter,
& Schulten, 1990), an exact noise model for the probabilistic blob location
can be formulated (see the appendix). With equation 3.8 the probability for
a particular combination of blob locations is

1
p(T0, po) = p(rolpo)p(po) = ; Byirywr By gy R (29)

and the correlation between two neurons defined as the average product of

their activities is y y
{a.ap) = ZP(TO, 00)B11,Byp, (2.10)
T0P0
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k4

1

=33 BouwryBomwzBreBom (2.11)
T0P0 t'p’ o~
1

=R Z (Z Br’roBrtn) Wy p (Z Bp’ponpo) (2.12)

T'p’ [ o

1 - - R

= E tlzpl Bttlwtlpprlp, with By, = % Bvlvovao’ (213)

where the brackets (-) indicate the ensemble average over a large number
of blob presentations. B, and B are the effective lateral connectivities
of the input and the output layer, respectively, and are symmetrical even if
the individual blobs B,,, and B, are not, thatis, Dy, = £Bpp Dev = Bew,
and Dy = D = D:¢Dyp = %B,rréprp. Notice the linear relation between
the weights w, and the correlations (a.4,) in the probabilistic blob model
(see equation 2.13).

Substituting the correlation into equation 2.3 for the weight dynamics
leads to:

. les .
(tep) = (ara,) = R ZBrr’wt’p’Bp’p- (2.14)
t'p’

The same normalization rules given above (equations 2.4-2.6) apply to this
dynamics. Since there is little danger of confusion, we neglect the averaging
brackets for (i;,) in subsequent equations and simply write W, = (az, ).

Although we did not give a mathematical model of the mechanism by
which the probabilistic blob location as given in equation 2.8 could be imple-
mented, it may be interesting to note that the probabilistic approach can be
generalized to other activity patterns, such as stripe patterns or hexagons,
which can be generated by Mexican hat interaction functions (local excita-
tion, finite-range inhibition) (von der Malsburg, 1973; Ermentrout & Cowan,
1979). If the probability for a stripe pattern’s arising in the output layer is
linear in its overlap with the input, the same derivation follows, though the
indices pp and 7 will then refer to phase and orientation of the patterns
rather than location of the blobs.

Using the probabilistic blob location in the output layer instead of the
deterministic one is analogous to the soft competitive learning proposed
by Nowlan (1990) as an alternative to hard (or winner-take-all) competitive
learning. Nowlan demonstrated superior performance of soft competition
over hard competition for a radial basis function network tested on recog-
nition of handwritten characters and spoken vowels, and suggested there
might be a similar advantage for neural map formation. The probabilistic
blob location induced by noise might help improve neural map formation
by avoiding local optima.

Copyrig[\t ©.2001 All Rights Reserved
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L)

2.2 Objective Function. The next step is to find an objective function
that generates the dynamics as a gradient flow. For the above example, a
suitable objective function is

H(W) = a5 Z Wrp pp’Brt’wtp ) (215)
tp't 4

1
since it yields equation 2.14 from ), = %:—:2, taking into account that
va’ = Ev’v-

2.3 Constraints. Thenormalization rules givenabove ensure that synap-
tic weights do not become negative and that the sums over synaptic weights
originating from an input neuron or terminating on an output neuron do
not become larger than 1. This can be written in the form of inequalities for
constraint functions g:

grp(w) = Wp = 0, (2.16)

gW) =1-) wey >0, 2.17)
o

goW) =1-) wy, >0. 1

These constraints define a region within which the objective function is to
be maximized by steepest ascent. While the constraints follow uniquely

from the normalization rules, the converse is not true. In general, there are
various normalization rules that would enforce or at least approximate the
constraints, but only some of them are compatible with the constrained
optimization framework. As shown in section 5.2.1, compatible normaliza-
tion rules can be obtained by the method of Lagrangian multipliers. If a
constraint gy, x € {zp, t, p} is violated, a normalization rule of the form

08y

3, for all 7p, (2.19)

if gx(W) <0: 'w,,, = wtp + )vx

has to be applied, where A, is a Lagrangian multiplier and determined such
that g,(w) = 0. This method actually leads to equations 2.4-2.6, which are
therefore a compatible set of normalization rules for the constraints above.
This is necessary to make the formulation as a constrained optimization
problem (see equations 2.15-2.18) an appropriate description of the original
dynamics (see equations 2.3-2.6).

This example illustrates the general scheme by which a detailed model
dynamics for neural map formation can be transformed into a constrained
optimization problem. The correlations, objective functions, and constraints
are discussed in greater detail and for a wide variety of models below.
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3 Correlations

In the above example, correlations in a highly nonlinear dynamics led to a
linear relationship between synaptic weights and the induced correlations.
We derived effective lateral connections in the input as well as the output
layer mediating these correlations. Corresponding equations for the cor-
relations have been derived for other, mostly linear activity models (e.g.,
Linsker, 1986; Miller, 1990; von der Malsburg, 1995), as summarized here.

Assume the dynamics in the input layer is described by neural activities
a,(t) € R, which yield mean activities {1,) and correlations (a,,a,}. The
input received by the output layer is assumed to be a linear superposition
of the activities of the input neurons:

i =Y Woply. (3.1)
pr

This input then produces activity in the output layer through effective lateral
connections in a linear fashion:

;=Y Devip =) DegWoyay. (3.2)
' r’p’

As seen in the above example, this linear behavior could be generated by
. a nonlinear model. Thus, the neurons need not be linear, only the effective
behavior of the correlations (cf. Sejnowski, 1976; Ginzburg & Sompolinsky,
1994). The mean activity of output neurons is

(a:) = ZDn'wt'p' {ay) = ZAl]w]- (3.3)
t'p’ ]

Assuming a linear correlation function ({a,, @@y + a,7)) = alay,ay) +
a{a,, a,7) with a real constant ) such as the average product or the covari-
ance (Sejnowski, 1977), the correlation between input and output neurons
is

{ac,a,) = Z Devwepylay, a,) = Z Dz]wj- (34)
oo ]'

Note thati = {p, 7}, j = (o', '}, Ay = Aji = DevApy = Div{ay), and Dy =
Dy = D;vDy, = D:rv{ay, a,). Since the right-hand sides of equations 3.3
and 3.4 are formally equivalent, we will consider only the latter one in the
further analysis, bearing in mind that equation 3.3 is included as a special
case.

In this linear correlation model, all variables may assume negative val-
ues. This may not be plausible for the neural activities a, and a,. However,
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a

equation 3.4 can be derived also for nonnegative activities, and a similar
equation as equation 3.3 can be derived if the mean activities (1,) are pos-
itive. The difference for the latter would be an additional constant, which
can always be compensated for in the growth rule.

The correlation model in Linsker (1986) differs from the linear one intro-
duced here in two respects. The input (see equation 3.1) has an additional
constant term, and correlations are defined by subtracting positive constants
from the activities. However, it can be shown that correlations in the model
in Linsker (1986) are a linear combination of a constant and the terms of
equations 3.3 and 3.4.

4 Objective Functions

In general, there is no systematic way of finding an objective function for a
particular dynamical system, but it is possible to determine whether there
exists an objective function. The necessary and sufficient condition is that
the flow field of the dynamics be curl free. If there exists an objective function
H(w) with continuous partial derivatives of order two that generates the
dynamics @; = dH(w)/dw,, then

dw, _ *H(w) _ 3°H(w) _ dw,
dw,  Bwdw;  dwdw, dw,

4.1)

The existence of an objective function is thus equivalent to 9w, /ow, =

91, /dw;, which can be checked easily. For the dynamics given by

Wi =Y Dyw 4.2)
]

(cf. equation 2.14), for example, 3w;/dw, = D;; = o1y, /dw;, which shows that
it can be generated as a gradient flow. A suitable objective function is

—

1
Hw) = 5 Y wDyw, 4.3)
y

(cf. equation 2.15), since it yields w, = dH(w)/ow,.
A dynamics that cannot be generated by an objective function directly is

Wi =w, y_ Dywj, (4.4)
1

as used in Haussler and von der Malsburg (1983), since for i # j we obtain
ow;/dw, = w,Dy # w,Dj; = 91, /9w,, and 1w, is not curl free. However, it is
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r

sometimes possible to convert a dynamics with curl into a curl-free dynam-
ics by a coordinate transformation. Applying the transformation w; = 10?
(C™) to equation 4.4 yields

. . 1 1
U, = _'w_-wi = W ZD,]"CU] = -2-'01 ZDI]_vZ (45)
1
]

which is curl free, since 99,/9v, = %v,D,,%v] = 97,/00;. Thus, the dynamics
of ¥, in the new coordinate system V¥ can be generated as a gradient flow.
A suitable objective function is

1«1 1
HWw) = > Z vau,jzvf, 4.6)
q

since it yields o, = 8H(v)/9v,. Transforming the dynamics of v back into
the original coordinate system W, of course, yields the original dynamics
in equation 4.4:

. dw, . 1 1
w; = —dv_:v’ = Zvlz Z]:D"JZUJZ =W ;D,,w,. 7)

Coordinate transformations thus can provide objective functions for dy-
namics that are not curl free. Notice that H(v) is the same objective function
as H(w) (see equation 4.3) evaluated in V¥ instead of W. Thus H(v) =
H(w(v)) and H is a Lyapunov function for both dynamics.
More generally, for an objective function H and a coordinate transforma-
tion w, = w,(vy),
. d dw;., dw,oH dw, 2 3H
w;, = -CE [wi(w)] = ‘dzvl = d—w"é‘v—l = (d—v,) 'a_wl’ 4.8)
which implies that the coordinate transformation simply adds a factor
(dw,/dv;)? to the original growth term obtained in the original coordinate
system W. For the dynamics in equation 4.4 derived under the coordinate
transformation w; = 302 (C) relative to the dynamics of equation 4.2, we
verify that (dw; /dv,)?> = w,. Equation 4.8 also shows that fixed points are
preserved under the coordinate transformation in the region where dw, /dv,
is defined and finite but that additional fixed points may be introduced if
dw,/dv, = 0.
This effect of coordinate transformations is known from the general the-
ory of relativity and tensor analysis (e.g., Dirac, 1996). The gradient of a
potential (or objective function) is a covariant vector, which adds the factor
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put neurons, {a;) = Zj Ayw;. This term is, for instance, important to form
topographic maps. Functional aspects of term Q are discussed in section 6.3.

5 Constraints

A constraint is either an inequality describing a surface (of dimensionality
RT - 1if RT is the number of weights) between valid and invalid region or
an equality describing the valid region as a surface. A normalization rule
is a particular prescription for how the constraint has to be enforced. Thus,
constraints can be uniquely derived from normalization rules but not vice
versa.

5.1 Orthogonal Versus Nonorthogonal Normalization Rules. Normal-
ization rules can be divided into two classes: those that enforce the con-
straints orthogonal to the constraint surface, that is, along the gradient of
the constraint function, and those that also have a component tangential to
the constraint surface (see Figure 4). We refer to the former ones as orthogonal

and to the latter ones as nonorthogonal.

Only the orthogonal normalization rules are compatible with an objec-
tive function, as is illustrated in Figure 5. For a dynamics induced as an
ascending gradient flow of an objective function, the value of the objective

function constantly increases as long as the weights change. If the weights
cross a constraint surface, a normalization rule has to be applied iteratively

to the growth rule. Starting from the constraint surface at point w’, the gra-
dient ascent causes a step to point % in the invalid region, where W — w’
is in general nonorthogonal to the constraint surface. A normalization rule
causes a step back to w on the constraint surface. If the normalization rule
is orthogonal, that is, w — W is orthogonal to the constraint surface, w — &
is shorter than or equal to W — w’ and the cosine of the angle between the
combined step w — w’ and the gradient W — w’ is nonnegative, that is, the
value of the objective function does not decrease. This cannot be guaranteed
for nonorthogonal normalization rules, in which case the objective function
of the unconstrained dynamics may not even be a Lyapunov function for
the combined system, including weight dynamics and normalization rules.
Thus, only orthogonal normalization rules can be used in the constrained

_igptimization framework.

The term orthogonal is not well defined away from the constraint surface.
However, the constraints used in this article are rather simple, and a nat-
ural orthogonal direction is usually available for all weight vectors. Thus,
the term orthogonal will also be used for normalization rules that do not
project back exactly onto the constraint surface but keep the weights close
to the surface and affect the weights orthogonal to it. For more complicated
constraint surfaces, more careful considerations may be required.
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H(w) =2w+w,
W2 Vp=Wo

V1=2W1

Figure3: Theeffectof coordinate transformations (in theinduced dynamics. The
figure shows a simple objective function H in the original coordinate system W
(left) and the new coordinate system V (right) with wy, = v1/2 and w; = 0.
The gradient induced in W (dashed arrow) and the gradient induced in V and
then backtransformed into W (solid arrows) have the same component in the
w,, direction but differ by a factor of four in the w, direction (cf. equation 4.8).
Notice that the two dynamics differ in amplitude and direction, but thatHisa
Lyapunov function for both.

dw,/dv, through the transformation from W to V. Since V as a kinematic
description of the trajectory is a contravariant vector, this adds another fac-
tor dw;/do, through the transformation back from V to W. If both vectors
were either covariant or contravariant, the back-and-forth transformation
between the different coordinate systems would have no effect. The same
argument holds for the constraints in section 5.2. In some cases, it may also
be useful to consider more general coordinate transformations w; = w;(v)
where each weight w, may depend on all variables v, as is common in the
general theory of relativity and tensor analysis. Equation 4.8 would have to
be modified correspondingly. In Figure 3_the effect of coordinate transfor-
mations is illustrated by a simple example.

Table 1 shows two objective functions and the corresponding dynam-
ics terms they induce under different coordinate transformations. The first
objective function, L, is linear in the weights and induces constant weight
growth (or decay) under coordinate transformation Cl. The growth of one
weight does not depend on other weights. This term can be useful for dy-
namic link matching to introduce a bias for each weight depending on the
similarity of the connected neurons. The second objective function, Q, is
a quadratic form. The induced growth rule for one weight includes other
weights and is usually based on correlations between input and output
neurons, {4:4,) = 3 ;Dyw;, and possibly also the mean activities of out-
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Figure 4: Different constraints and different ways in which constraints can be

. violated and enforced. The constraints along the axes are givenby g, = w, > 0

| and g = w, > 0, which keep the weights w, and w, nonnegative. The constraint

8 =1— (w, +w) > 0 keeps the sum of the two weights smaller or equal to

1. Black dots indicate points in state-space that may have been reached by the

growth rule. Dot 1: None of the constraints is violated, and no normalization rule

isapplied. Dot2: g, > Ois violated, and an orthogonal subtractive normalization

rule is applied. Dot 3: g, > 0 is violated, and a nonorthogonal multiplicative

normalization rule is applied. Notice that the normalization does not follow the

gradient of g,.; itis not perpendicular to theline g, = 0. Dot 4: Two constraints are

violated, and the respective normalization rules must be applied simultaneously.

Dot 5: g, > 0 is violated, but the respective normalization rule violates g, > 0.

Again both rules must be applied simultaneously. The dotted circles indicate
regions considered in greater detail in Figure 5.

Whether a normalization rule is orthogonal depends on the coordinate
system in which it is applied. This is illustrated in Figure 6 and discussed in
greater detail below. The same rule can be nonorthogonal in one coordinate
system but orthogonal in another. It is important to find the coordinate sys-
tem in which an objective function can be derived and the normalization
rules are orthogonal. This then is the coordinate system in which the model
can be most conveniently analyzed. Not all nonorthogonal normalization
rules can be transformed into orthogonal ones. In Wiskott and von der Mals-
burg (1996), for example, a normalization rule is used that affects a group
of weights if single weights grow beyond their limits. Since the constraint
surface depends on only one weight, only that weight can be affected by
an orthogonal normalization rule. Thus, this normalization rule cannot be
made orthogonal.

b x

5.2 Constraints Can Be Enforced in Different Ways. For a given con-
0 straint, orthogonal normalization rules can be derived using various meth-
/s Phet
(b

]
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Figure 5: The effect of orthogonal versus nonorthogonal normalization rules.
The two circled regions are taken from Figure 4. The effect of the orthogonal
subtractive rule is shown on the left, and the nonorthogonal multiplicative rule
is shown on the right. The growth dynamics is assumed to be induced by an
objective function, the equipotential curves of which are shown as dashed lines.
The objective function increases to the upper right. The growth rule (dotted ar-
rows) and normalization rule (dashed arrows) are applied iteratively. The net
effect is different in the two cases. For the orthogonal normalization rule, the dy-
namics increases the value of the objective function, while for the nonorthogonal
normalization, the value decreases and the objective function that generates the
growth rule is not even a Lyapunov function for the combined system.

ods. These include the method of Lagrangian multipliers, the inclusion of
penalty terms, and normalization rules that are integrated into the weight
dynamics without necessarily having any objective function. The former
two methods are common in optimization theory. The latter is more spe-
cific to a model of neural map formation. It is also possible to substitute a
constraint by a coordinate transformation.

5.2.1 Method of Lagrangian Multipliers. Lagrangian multipliers can be
used to derive explicit normalization rules, such as equations 2.4-2.6. If the
constraint g,(w) > 0 is violated for W as obtained after one integration step
of the learning rule, @,(t + At) = wi(t) + Atwi(t), the weight vector has
to be corrected along the gradient of the constraint function g, which is
orthogonal to the constraint surface g,(w) =0,

ifgu (W) <0:  w,=® + x,,g% for all (5.1)

1

where (3g,/0W;) = (3g/0w;,) at w = W and A, = Ax(W) is a Lagrangian
multiplier and determined such that g,(w) = 0 is obtained. If no constraint
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Figure 6: The effect of a coordinate transformation on a normalization rule. The
constraint function is g, = 1 — (w, + w)) > 0, and the coordinate transformation
isw, = %vf w, = 411)]2 In the new coordinate system V* (right), the constraint
becomes g, = 1~ ;(v? +1?) = 0and leads there to an orthogonal multiplicative
normalization rule. Transforming back into W (left) then yields a nonorthogonal
multiplicative normalization rule.

is violated, the weights are simply taken to be w, = @;. The constraints that
must be taken into account, either because they are violated or because they
become violated if a violated one is enforced, are called operative. All others
are called inoperative and do not need to be considered for that integration
step. If there is more than one operative constraint, the normalization rule
becomes

ifgn(W) <0:  w=d+ ) Ang‘% forall, 62)
L

neNp

where Np denotes the set of operative constraints. The Lagrangian multi-
pliers A, are determined such that g,»(w) = 0 for all n’ € N (cf. Figure 4).
Computational models of neural map formation usually take another strat-
egy and simply iterate the normalization rules (see equation 5.1) for the
operative constraints individually, which is in general not accurate but may
be sufficient for most practical purposes. It should also be mentioned that
in the standard method of Lagrangian multipliers as usually applied in
physics or optimization theory, the two steps, weight growth and normal-
ization, are combined in one dynamical equation such that w remains on the
constraint surface. The steps were split here to obtain explicit normalization
rules independent of growth rules.
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Consider now the effect of coordinate transformations on the normaliza-
tion rules derived by the method of Lagrangian multipliers. The constraint
in equation 2.17 can be written as gn(w) =6, — Y ;; W, > 0 and leadstoa
subtractive normalization rule as in the example above (see equation 2.5).
Under the coordinate transformation C¥ (w, = lv,z), the constraint becomes

8n(V) = 0 — 3 ey, 19?2 > 0, and in the coordinate system V¥, the normal-
ization rule is:

fg,(¥) <0: v,=0-2 (——— Vo _ 1) (—%ﬁ,) (5.3)
v Z]eln %5]2
A

B vV Z]el,, %5;2

Taking the square on both sides and applying the backtransformation from
V¥ to W leads to

foralli e I,. (54

O,
1= =
Z;el,, w]

This is a multiplicative normalization rule in contrast to the subtractive
one obtained in the coordinate system W (see also Figure 6). It is listed
as normalization rule N¥ in Table 1 (or N¥ for constraint g(w) = 0). This
multiplicative rule is commonly found in the literature (cf. Table 2), but it is
not orthogonal in W, though it is in V¥.

For a more general coordinate transformation w; = w,(v;) and a constraint
function g(w), an orthogonal normalization rule can be derived in V with
the method of Lagrangian multipliers and transformed back into W, which
results in general in a nonorthogonal normalization rule:

if gn(W) <0 w

foralliel,. (5.5)

2

Qif constraint is violated: w; =W+ A (d—?’) a—?- +0@(32). J(5.6)

dd; / o,

The A actually would have to be calculated in V, but since A oc At, second-
and higher-order terms can be neglected for small At and A calculated such
that g(w) = 0. Notice the similar effect of the coordinate transformation on
the growth rules (see equation 4.8), as well as on the normalization rules (see
equation 5.6). In both cases, a factor (dw,/ dv,)? is added to the modification
rate. As for gradient flows derived from objective functions, for a more
general coordinate transformation w, = w,(v), equation 5.6 would have to
be modified accordingly.

We indicate these normalization rules by a subscript = (for an equality)
and > (for an inequality), because the constraints are enforced immediately
and exactly.
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5.2.2 Integrated Normalization Without Objective Function. Growth rule
and explicit normalization rule as derived by the method of Lagrangian
multipliers can be combined in one dynamical equation. As an example,
consider the growth rule w, = f,, thatis, @,(t + At) = w, () + Atf,(t), where
fiisanarbitrary function in w and canbe interpreted as a fitness of a synapse.
Together with the normalization rule N¥ (see equation 5.5) and assuming
Zjel w;(t) = 6, it follows that (von der Malsburg & Willshaw, 1981):

8 [wi(t) + Ath)]
i(t+ At) = 5.
S I CTORS ) 7
= wi(t) + Atfi(t) — At-z%(—tz Yt +0wd) (58
el
= wo=50-223 5, 59)
jel

and with W($) = Ziel wi(t)

W = (1 - "—V(;i)) > 5o, (5.10)‘_}

jel

which shows that W = 6 is indeed a stable fixed point under the dynamics
of equation 5.9. However, this is not always the case. The same growth rule
combined with the subtractive normalization rule N1 (see equation 2.5)
would yield a dynamics that provides only a neutrally stable fixed point for
W = 6, An additional term (6 — E]el w; (£)) would have to be added to make
the fixed point stable. This is the reason that this type of normalization rule
is listed in Table 1 only for C¥. We indicate these kinds of normalization
rules by the subscript = because the dynamics smoothly approaches the
. constraint surface and will stay there exactly.

Notice that this method differs from the standard method of Lagrangian
multipliers, which also yields a dynamics such that w remains on the con-
straint surface. The latter applies only to the dynamics at g(w) = 0 and
always produces neutrally stable fixed points because }_; u’z,-(t)% = 0is

equired by definition. If applied to a weight vector outside the constraint
urface, the standard method of Lagrangian multipliers yields g(w) = const
0. !
1An advantage of this method is that it provides one dynamics for the
wth rule as well as the normalization rule and that the constraint is
orced exactly. However, difficulties arise when interfering constraints are
bined; that is, different constraints affect the same weights. This type of
ulation is required for certain types of analyses (e.g., Hdussler & von der
>urg, 1983). A disadvantage is that in general there no longer exists an

A
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objective function for the dynamics, though the growth term itself without
the normalization term still has an objective function that is a Lyapunov
function for the combined dynamics. ‘

5.2.3 Penalty Terms. Another method of enforcing the constraints is to
add penalty terms to the objective function (e.g., Bienenstock & von der
Malsburg). For instance, if the constraint is formulated as an equality g(w)
0,thenadd —5 g2 (w); if the constraint is formulated asan mequahty gw) <0
org(w) >0, then add In [g(w)]. Other penalty functions, such as gtand 1/g,
are possible as well, but those used here induce the required terms as used
in the literature.

The effect of coordinate transformations is the same as in the case of
objective functions. Consider, for example, the simple constraint g,(w) =
w; > 0 (L, in Table 1), which keeps weights w, nonnegative. The respective
penalty term is In |w,| (I, ) and the induced Ynamjcs under the four different
transformations considered in Table 1 are W EL' 1, and ;.

An advantage of this approach is that a ‘coherent objective function, as
well as a weight dynamics, is available, including growth rules and normal-
ization rules. A disadvantage may be that the constraints are only approxi-
mate and not enforced strictly, so that g(w) ~ 0 and g(w) < 0 or g(w) > 0.
We therefore indicate these kinds of normalization rules by subscripts~and
>. However, the approximation can be made arbitrarily precise by weight- /
ing the penalty terms accordingly. /

5.2.4 Constraints Introduced by Coordinate Transformations. An entlre/
different way by which constraints can be enforced is by means of a coo/
nate transformation. Consider, for example, the coordinate transform¢
C¥ (w, = 1v?). Negative weights are not reachable under this coor;’
transformation because the factor (dw,/dv;)? = w, added to the grow’ ‘
(see equation 4.8) as well as to the normalization rules (see equahof |
lows the weight dynamics of weight w; to slow down as it approa/ /
so that positive weights always stay positive (This can be generalr !
itive and negative weights by the coordinate transformation v
Thus the coordinate transformation C* (and also C*%) nnphcﬂ/ /

limitation constraint I, . This is interesting because it showy’ J

nate transformation can substitute for a constraint, which r

optimization theory. / 8
The choice of whether to enforce the constraints by '

tion, an integrated dynamics without an objective fun i

or even implicitly a coordinate transformation depe g’g’

well as the methods applied to analyze it. Table 1 sh :’szc

functions and their corresponding normalization ry % %y,

ent coordinate systems and by the threé different “m,

Not shown is normalization implicit in a coor Ust

7 i
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interesting that there are only two types of constraints. All variations arise
from using different coordinate systems and different methods by which
the normalization rules are implemented. The first type is a limitation con-
straint I, which limits the range of individual weights. The second type is
a normalization constraint N, which affects a group of weights, usually the
sum, very rarely the sum of squares as indicated by Z. In the next section
we show how to use Table 1 for analyzing models of neural map formation
and give some examples from the literature.

6 Examples and Applications

6.1 How to Use Table 1. The aim of Table 1 is to provide an overview
of the different objective functions and derived growth terms as well as the
constraint functions and derived normalization rules and terms discussed
in this article. The terms and rules are ordered in columns belonging to a
particular coordinate transformation C. Only entries in the same column
may be combined to obtain a consistent, constrained optimization formu-
lation for a system. However, some terms can be derived under different
coordinate transformations. For instance, the normalization rule I_ is the
same for all coordinate transformations, and term L** with g, = 1/a; is the
same as term L” with g, = 1.

To analyze a model of neural map formation, first identify possible can-
didates in Table 1 representing the different terms of the desired dynam-
ics. Notice that the average activity of output neurons is represented by
(a:) = 3 Ayw,y and that the correlation between input and output neurons
is represented by (a;,a,) = Y; Dyw,. Usually both terms will be only an
approximation of the actual mean activities and correlations of the system
under consideration (cf. section 2.1). Notice also that normalization rules
N¥, N2®, Z1, and Z2 are actually multiplicative normalization rules and
not subtractive ones, as might be suggested by the special form in which
they are written in Table 1.

Next identify the column in which all terms of the weight dynamics
can be represented. This gives the coordinate transformation under which
the model can be analyzed through the objective functions and constraint
or penalty functions listed on the left side of the table. Equivalent mod-
els (cf. section 6.4) can be derived by moving from one column to another
and by using normalization rules derived by a different method. Thus, Ta-
ble 1 provides a convenient tool for checking whether a system can be an-
alyzed within the constrained optimization framework presented here and
for identifying the equivalent models. The function of each term can be co-
herently interpreted with respect to the objective, constraint, and penalty
functions on the left side. The table can be extended with respect to ad-
ditional objective, constraint, and penalty functions, as well as additional
coordinate transformations. Although the table is compact, it suffices to
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explain a wide range of representative examples from the literature, as dis-
cussed in the next section.

6.2 Examples from the Literature. Table 2 shows representative models
from the literature. The original equations are listed, as well as the classi-
fication in terms of growth rules and normalization rules listed in Table 1.
Detailed comments for these models and the model in Amari (1980) follow
below. The latter is not listed in Table 2 because it cannot be interpreted
within our constrained optimization framework. The dynamics of the in-
troductory example of section 2 can be classified as Q' (see equation 2.3), IL
(see equation 2.4), and N1 (see equations 2.5 and 2.6).

The models are discussed here mainly with respect to whether they can
be consistently described within the constrained optimization framework,
that is, whether growth rules and normalization rules can be derived from
objective functions and constraint functions under one coordinate transfor-
mation (that does not imply anything about the quality of a model). An-
other important issue is whether the linear correlation model introduced
in section 3 is an appropriate description for the activity dynamics of these
models. It is an accurate description for some of them, but others are based
on nonlinear models, and the approximations discussed in section 2.1 and
appendix A have to be made.

Models typically contain three components: the quadratic term Q to

induce neighborhood-preserving maps, a limitation constraint I to keep
synaptic weights positive, and a normalization constraint N (or Z) to induce

competition between weights and to keep weights limited. The limitation
constraint can be waived for systems with positive weights and multiplica-
tive normalization rules (Konen & von der Malsburg, 1993; Obermayer et
al,, 1990; von der Malsburg, 1973) (cf. section 5.2.4). A presynaptic nor-
malization rule can be introduced implicitly by the activity dynamics (cf.
section A.2 in the appendix). In that case, it may be necessary to use an ex-
plicit presynaptic normalization constraint in the constrained optimization
formulation. Otherwise the system may have a tendency to collapse on the
input layer (see section 6.3), a tendency it does not have in the original for-
mulation as a dynamical system. Only few systems contain the linear term
L, which can be used for dynamic link matching. In Haussler and von der
Malsburg (1983) the linear term was introduced for analytical convenience
and does not differentiate between different links. The two models of dy-
namic link matching (Bienenstock & von der Malsburg, 1987; Konen & von
der Malsburg, 1993) introduce similarity values implicitly and not through
the linear term. The models are now discussed individually in chronological
order.

von der Malsburg (1973): The activity dynamics of this model is nonlin-
ear and based on hexagon patterns in the output layer. Thus, the applicabil-
ity of the linear correlation model is not certain (cf. section 2.1). The weight
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dynamics is inconsistent in its original formulation. However, Miller and
MacKay (1994) have shown that constraints NZ and Z! have a very sim-
ilar effect on the dynamics, so that the weight dynamics could be made
consistent by using ZL instead of N. No limitation constraint is necessary
because neither the growth rule nor the multiplicative normalization rule
can lead to negative weights, and the normalization rule limits the growth
of positive weights.

Amari (1980): This is a particularly interesting model not listed in Ta-
ble 2. It is based on a blob dynamics, but no explicit normalization rules
are applied, so that the derivation of correlations and mean activities as
discussed in section 3 cannot be used. Weights are prevented from growing
infinitely by a simple decay term, which is possible because correlations in-
duced by the blob model are finite and do not grow with the total strength of
the synapses. Additional inhibitory inputs received by the output neurons
from a constantly active neuron ensure that the average activity is evenly
distributed in the output layer, which also leads to expanding maps. In this
respect, the architecture deviates from Figure 2. Thus, this model cannot be
formulated within our framework.

Whitelaw and Cowan (1981): The activity dynamics is nonlinear and
based on blobs. Thus, the linear correlation model is only an approxima-
tion (cf. section 2.1). The weight dynamics is difficult to interpret in the
constrained optimization framework. The normalization rule is not spec-
ified precisely, but it is probably multiplicative because a subtractive one
would lead to negative weights and possibly infinite weight growth. The
quadratic term —Q! is based on mean activities and would lead by itself
to zero weights. The § term was introduced only to test the stability of the
system.

Hiussler and von der Malsburg (1983): This model is directly formulated
in terms of weight dynamics; thus, the linear correlation model is accurate.
The weight dynamics is consistent; however, as argued in section 5.2.2,
there is usually no objective function for the normalization rule NZ, but by
replacing N¥ by N¥ or NZ, the system can be expressed as a constrained
optimization problem without qualitatively changing the model behavior.
The limitation term I? and the linear term L¥ are induced by the constant
o and were introduced for analytical reasons. The former is meant to allow
weights to grow from zero strength, and the latter limits this growth. & needs
to be small for neural map formation, and for a stable one-to-one mapping,
a strictly should be zero. Thus, these two terms could be discarded if all
weights would be initially larger than zero. Notice that the linear term does
not differentiate between different links and thus does not have a function
as suggested for dynamic link matching (cf. sections 4 and 6.5).

Linsker (1986): This model is also directly formulated in terms of weight
dynamics; thus, the linear correlation model is accurate. The weight dy-
namics is consistent. Since the model uses negative and positive weights
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and weights have a lower and an upper bound, no normalization rule is
necessary. The weights converge to their upper or lower limit.

Bienenstock and von der Malsburg (1987): This is a model of dynamic
link matching and was originally formulated in terms of an energy function.
Thus the classification is accurate. The energy function does not include the
linear term. The features are binary, black versus white, and the similarity
values are therefore 0 and 1 and do not enter the dynamics as continuous
similarity values. The T, in the constraint I. represent the stored patterns
in thé associative memory, not similarity values.

Miller et al. (1989): This model is directly formulated in terms of weight
dynamics; thus, the linear correlation model is accurate. One inconsistent
part in the weight dynamics is the multiplicative normalization rule N¥,
which is applied when subtractive normalization leads to negative weights.
But it is only an algorithmic shortcut to solve the problem of interfering
constraints (limitation and subtractive normalization). A more systematic
treatment of the normalization rules could replace this inconsistent rule (cf.
section 5.2.1). Another inconsistency is that weights that reach their upper
or lower limit become frozen, or fixed at the limit value. With some ex-
ception, this seems to have little effect on the resulting maps (Miller et al.,
1989,:n. 23). Thus, this model has only two minor inconsistencies, which
could be modified to make the system consistent. Limitation constraints en-
ter the weight dynamics in two forms, I% and I2. The former tends to keep
wh, = - $azrp while the latter keeps w’;p € [0, 8c;,], which can unnecessarily
introduce conflicts. However, y = € = 0, so that only the latter constraint
appliés and the I2 term is discarded in later publications. In principle, the
system can be simplified by using coordinate transformation C! instead of
C*, thereby eliminating «.,, in the growth rule Q* as well as in the normal-
ization rule N2, but not in the normalization rule I2. This is different from
setting ;, to a constant in a certain region. Using coordinate transformation
C! would result in the same set of stable solutions, though the trajectories
would differ. Changing «;, generates a different set of solutions. However,
the original formulation using C* is more intuitive and generates the “cor-
rect” trajectories—those that correspond to the intuitive interpretation of
the mbdel.

Obermayer et al. (1990): This model is based on an algorithmic blob
mode] and the linear correlation model is only an approximation (cf. the
apperidix). The weight dynamics is consistent. It employs the rarely used
normlllization constraint Z, which induces a multiplicative normalization
rule under the coordinate transformation C!. No limitation constraint is nec-
essary because neither the growth rule nor the multiplicative normalization
rule can lead to negative weights, and positive weights are limited by the
normalization rule.

Tanaka (1990): This model uses a nonlinear input-output function for the
neurons, which makes a clear distinction between membrane potential and
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firing rate. However, this nonlinearity does not seem to play a specific func-
tional role and is partially eliminated by linear approximations. Thus, the
linear correlation model seems to be justified. The weight dynamics includes
parameters B,y (fsp in the original notation), which make it inconsistent. The
penalty term N%¥, which induces the first terms of the weight dynamics, is
- 2%1 Yoolko—K1 Y, Bpwe )%, which has to be evaluated under the coordi-
nate transformation C*® with o, = 1/8,. Later in the article, the parameters
B, are set to 1, so that the system becomes consistent. Tanaka gives an objec-
tive function for the dynamics, employing a coordinate transformation for
this purpose. The objective function is not listed here because it is derived
under a different set of assumptions, including the nonlinear input-output
function of the output neurons and a mean field approximation.

Goodhill (1993): This model is based on an algorithmic blob model and
the linear correlation model is only an approximation (cf. the appendix).
Like the model in Miller et al. (1989), this model uses an inconsistent nor-
malization rule as a backup, and it freezes weights that reach their upper
or lower limit. In addition, it uses an inconsistent normalization rule for
the input neurons. But since this inconsistent multiplicative normalization
for the input neurons is applied after a consistent subtractive normaliza-
tion for the output neurons, its effect is relatively weak, and substituting
it by a subtractive one would make little difference (G. J. Goodhill, per-
sonal communication). To avoid dead units (neurons in the output layer
that never become active), Goodhill (1993) divides each output activity by
the number of times each output neuron has won the competition for the
blob in the output layer. This guarantees a roughly equal average activity
of the output neurons. With the probabilistic blob model (cf. the appendix),
dead units do not occur as long as output neurons have any input connec-
tions. The specific parameter setting of the model even guarantees a roughly
equal average activity of the output neurons under the probabilistic blob
model because the sum over the weights converging on an output neuron
is roughly the same for all neurons in the output layer. Thus, despite some
inconsistencies, this model can probably be well approximated within the
constrained optimization framework.

Konen and von der Malsburg (1993): The activity dynamics is nonlinear
and based on blobs. Thus the linear correlation model is only an approxi-
mation (cf. section 2.1). The weight dynamics is consistent. Although this
is a model of dynamic link matching, it does not contain the linear term
to bias the links. It introduces the similarity values in the constraints and
through the coordinate transformation C*" (see section 6.4). No limitation
constraint is necessary because neither the growth rule nor the multiplica-
tive normalization rule can lead to negative weights, and positive weights
are limited by the normalization rule.

6.3 Some Functional Aspects of Term Q. So far the focus of the consid-
erations has been only on formal aspects of models of neural map formation.
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In this section some remarks on functional aspects of the quadratic term Q
are made.

Assume the effective lateral connectivities in the output layer, and in
the input layer are sums of positive and/or negative contributions. Each
contribution can be either a constant, C, or a centered gaussian-like func-
tion, G, which depends on only the distance of the neurons, for example,
Dy = Dyjp—p) if p is a spatial coordinate. The contributions can be indi-
cated by subscripts to the objective function Q. First index indicates the
lateral connectivity of the input layer, the second index the one of the out-
put layer. A negative gaussian (constant) would have to be indicated by
=G (~0). Q¢ for instance, would indicate a negative constant Dy and
a positive gaussian D,,. QG- would indicate a positive gaussian D,y
and a D, that is a difference of gaussians. Notice that negative signs can
cancel each other, for example Q(G_ G= ---Q(C_G)G = —Q(G_C)(_G). We thus
discuss the terms only in their simplest form;: ~Qc¢ instead of Q(—C)G' All
feedforward weights are assumed to be positive. Assuming all weights to
be negative would lead to equivalent results because Q does not change if
all weights change their sign. The situation becomes more complex if some
weights were positive and others negative. A term Q is called positive if
it can be written in a form where it has a positive sign and only positive
contributions; for example, "Q(—C)G = Q¢ is positive, while Q G—0)G isnot.
Since Q is symmetrical with respect to D,y and D/, a term such as Qc-o0c
has the same effect as QG- With the role of input layer and output layer

exchanged. A complicated term can be analyzed most easily by splitting
it intd' its elementary components. For instance, the term QG(G—-C) can be

split into Q. ~Qgc and analyzed as a combination of these two simpler
terms.

Some elementary terms are now discussed in greater detail. The effect
of the terms is considered under two types of constraints. In constraint A,
the total sum of weights is constrained, Zp,,, Wy = 1. In constraint B,
the sums of weights originating from an input neuron, > Wor = 1/R, or
terminating on an output neuron, " » Wprr = 1/T, are constrained, where R
and T denote the number of input and output neurons, respectively. Without
further constraints, a positive term always leads to infinite weight growth
and a negative term to weight decay.

Terms £Qcc simplify to £Qc= £D,, D+ (¥, wpr)? and depend on
only the sum of weights. Thus, neither term has any effect under constraints
AorB.

Term +Q; takes its maximum value under constraint A if all links ter-
minate on one output neuron. The map has the tendency to collapse. This
is because the lateral connections in the output layer are higher for smaller
distances and maximal for zero distance between connected neurons. Under
the constraint }__, w,py < 1, » Woz < 1, for instance, the resulting map
connects the input layer to a region in the output layer that is of the size of the
input layer even if the output layer is much larger. No topography is taken
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into account because D, is constant and does not differentiate between
different input neurons. Thus, this term has no effect under constraint B.

Term —Q has the opposite effect of +Qc- Consider the induced growth
term Wpr = —Dpp 3y Dev' 3y Werp. This is a convolution of D, with
Y, Wrp and induces the largest decay in regions where the weighted sum
over terminating links is maximal. A stable solution would require equal
decay for all weights because constraint A can compensate only for equal
decay. Thus, the convolution of Dy with Y, wy mustbe a constant. Since
D, is a gaussian, this is possible only if 3wy is a constant, as can be
easily seen in Fourier space. Thus, the map expands over the output layer,
and each output neuron receives the same sum of weights. Constraint A
could be substituted by a constant growth term L, in which case the expan-
sion effect could be obtained without any explicit constraint. As +Q, this
term has no effect under constraint B.

Term +Q,; takes its maximum value under constraint A if all but one
weight are zero. The map collapses on the input and the output layer. Un-
der constraint B, the map becomes topographic because links that originate
from neighboring neurons (high D,y value) favorably terminate on neigh-
boring neurons (high D, value). A more rigorous argument would require
a definition of topography, but as argued in section 6.7, the term +Q; can
be directly taken as a generalized measure for topography.

Term —Q has the opposite effect of +Qg. Thus, it leads under con-
straint A to a map that is expanded over input and output layer. In addition,
the map becomes antitopographic. Further analytical or numerical inves-
tigations are required to show whether the expansion is as even as for the
term —Q; and how an antitopographic map may look. Constraint B also
leads to an antitopographic map.

6.4 Equivalent Models. The effect of coordinate transformations has
been considered so far only for single growth terms and normalization rules.
Coordinate transformations can be used to generate different models that
are equivalent in terms of their constrained optimization problem. Consider
the system in Konen and von der Malsburg (1993). Its objective function and
constraint function are Q and N,

1 w,
Hw) = 5 S wDyw,  gw)=1-7) ;’ =0, 6.1)
y jel, 1

which must be evaluated under the coordinate transformation C*” to induce
the original weight dynamics Q*¥ and N¥,

. W,
w; = i, E D,jw], w; = &
=
] Zjeln a,

6.2)
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If evaluated directly (i.e., under the coordinate transformation C!), one
would obtain

. - 1 w1
wi=) Djw, w=®+———|1-Y L=, (6.3)
] Y JGZIn %)%

As argued in section 5.2.4, an additional limitation constraint I (or I1) has
tobe added to this system to account for the limitation constraint implicitly
introduced by the coordinate transformation C*“ for the dynamics above
(see equation 6.2).

It follows from equation 4.8 that the flow fields of the weight dynamics in
equations 6.2 and 6.3 differ, but since dw;/dv; # 0 for positive weights, the
fixed points are the same. That means that the resulting maps to which the
two systems converge, possibly from different initial states, are the same.
In this sense, these two dynamics are equivalent.

This also holds for other coordinate transformations within the defined
region as long as dw;/dv; is finite (dw;/dv; = 0 may introduce additional
fixed points). Thus, this method of generating equivalent models makes
it possible to abstract the objective function from the dynamics. Different
equivalent dynamics may have different convergence properties, their at-
tractor basins may differ, and some regions in state space may not be reach-
able under a particular coordinate transformation. In any case, within the
reachable state space, the fixed points are the same. Thus, coordinate trans-
formations make it possible to optimize the dynamics without changing its
objective function.

Normalization rules derived by different methods can substitute each
other without changing the qualitative behavior of a system. For instance,
L canbe replaced by L., or N, can be replaced by N, under any coordinate
transformation. These replacements will also generate equivalent systems
in a practical sense.

6.5 Dynamic Link Matching. In the previous section, the similarity val-
ues «; entered the weight dynamics in two places. In equation 6.2, the dif-
ferential effect of «; enters only the growth rule, while in equation 6.3, it
enters only the normalization rule. Growth and normalization rules can, to
some extent, be interchangeably used to incorporate feature information in
dynamic link matching. However, the objective function (see equation 6.1)
shows that the similarity values are introduced through the constraints and
that they are transferred to the growth rule only by the coordinate trans-
formation C*%. Similarity values can enter the growth rule more directly
through the linear term L. An alternative objective function for dynamic
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link matching is

1
H(w) = E ﬂ,w,+§ E w,Dyw;, gn(w)=1- E w, =0, (6.4)
! y

J€l,

with 8, = a,. The first term now directly favors links with high similarity
values. This may be advantageous because it allows better control over the
influence of the topography versus the feature similarity term. Furthermore,
this objective function is more closely related to the similarity function of
elastic graph matching in Lades et al. (1993), which has been developed as
an algorithmic abstraction of dynamic link matching (see section 6.7).

6.6 Soft versus Hard Competitive Normalization. Miller and MacKay
(1994) have analyzed the role of normalization rules for neural map forma-
tion. They consider a linear Hebbian growth rule Q! and investigate the
dynamics under a subtractive normalization rule N1 (S1 in their notation)
and two types of multiplicative normalization rules, N? and ZL (M1 and
M2 in their notation, respectively). They show that when considering an iso-
lated output neuron with the multiplicative normalization rules, the weight
vector tends to the principal eigenvector of the matrix D, which means that
many weights can maintain some finite value. Under the subtractive nor-
malization rule, a winner-take-all behavior occurs, and the weight vector
tends to saturate with each single weight having either its minimal or max-
imal value producing a more compact receptive field. If no upper bound is
imposed on individual weights, only one weight survives, corresponding
to a point receptive field.

von der Malsburg and Willshaw (1981) have performed a similar, though
less comprehensive, analysis using a different approach. Instead of modify-
ing the normalization rule, they considered different growth rules with the
same multiplicative normalization rule N%. They also found two qualita-
tively different behaviors: a highly competitive case in which only one link
survives (or several if single weights are limited in growth by individual
bounds) (case u=1 or =2 in their notation) and a less competitive case in
which each weight is eventually proportional to the correlation between
pre- and postsynaptic neuron (case u=0).

Hence, one can either change the normalization rule and keep the growth
rule or, vice versa, modify the growth rule and keep the normalization rule
the same. Either choice generates the two different behaviors. As shown
above, by changing both the growth and normalization rules consistently
by a coordinate transformation, it is possible to obtain two different weight
dynamics with qualitatively the same behavior. More precisely, the system
(Q¥, N®) is equivalent to (Q!, N, I') and has the same fixed points; the
former one uses a multiplicative normalization rule, and the latter uses a
subtractive one. This also explains why changing the growth rule or chang-
ing the normalization rule can be equivalent.
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It may therefore be misleading to refer to the different cases by the specific
normalization rules (subtractive versus multiplicative), because that is valid
only for the linear Hebbian growth rule Q. We suggest using a more gen-
erally applicable nomenclature that refers to the different behaviors rather
than the specific mathematical formulation. Following the terminology of
Nowlan (1990) in a similar context, the term hard competitive normalization
could be used to denote the case where only one link survives (or a set of
saturated links, which are limited by upper bounds); the term soft compet-
itive normalization could be used to denote the case where each link has
some gtrength proportional to its fitness.

X

6.7 Related Objective Functions. Objective functionsalso provide means
for comparing weight dynamics with other algorithms or dynamics of a dif-
ferent origin for which an objective function exists.

First, maximizing the objective functions L. and Q under linear con-
straints I and N is the quadratic programming problem, and finding an
optimal one-to-one mapping between two layers of same size for objective
function Q is the quadratic assignment problem. These problems are known
to be NP-complete. However, there is a large literature on algorithms that
efficiently solve special cases or find good approximate solutions in poly-
nomia? time (e.g., Horst, Pandalos, & Thoai, 1995).

Many related objective functions are defined only for maps for which
each input neuron terminates on exactly one output neuron with weight 1,
which makes the index r = (p) a function of index p. An objective function
of this'kind may have the form

H= Z Geprpts (6.5)
i

where G encodes how well a pair of links from p to 7(p) and from p’ to
t/(p") preserves topography. A pair of parallel links, for instance, would
yield high G values, while others would yield lower values. Now define a
particdjlar family of weights w that realize one-to-one connectivities:

- 1 ift=1(p)
Weo = [O otherwise. (,6'6)
wisaspbset of wwith@,, € {0, 1} asopposed tow;, € [0, 1]. Itindicates that
anobjegtive function was originally defined for a one-to-one map rather than
the more general case of an all-to-all connectivity. Then objective functions
of one-fo-one maps can be written as

HOW) = Y~ @, Goprplory = 3 0iGyih), 6.7)

tpt’p’ y
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with i = {p,7},j = {0, 7'} as defined above. Simply replacing W by w
then yields a generalization of the original objective function to all-to-all
connectivities.

Goodhill, Finch, and Sejnowski (1996) have compared 10 different ob-
jective functions for topographic maps and have proposed another, the C
measure. They show that for the case of an equal number of neurons in
the input and the output layer, most other objective functions can be ei-
ther reduced to the C measure, or they represent a closely related objective
function. This suggests that the C measure is a good unifying measure for
topography. The C measure is equivalent to our objective function Q with
w instead of w. Adapted to the notation of this article the C measure has
the form

COW) = Y @Gy, (6.8)
]

with a separable G, that is, Gy = Gprpv = GGy Thus, the objective
function Q is the typical term for topographic maps in other contexts as
well.

Elastic graph matching is an algorithmic counterpart to dynamic link
matching and has been used for applications such as object and face recog-
nition (Lades et al,, 1993). It is based on a similarity function that in its
simplest version is

_ _ 1 o
H(w) = Z Bw, + 2 Zw,G,]w,, 69)
f j

where Gy = —[(p, —Pp) — (Pr — p.)?, and p, and p; are two-dimensional
position vectors in the image plane. This similarity function corresponds
formaily to the objective function in equation 6.4. The main difference be-
tween these two functions is hidden in G and D. The latter ought to be
separable into two factors Dp;per = Dy Drr while the former is clearly not.
G actually favors a metric map, which tends to preserve not only neighbor-
hood relations but also distances, whereas with D, the maps always tend to
collapse.

6.8 Self-Organizing Map Algorithm. Models of the self-organizing
" map (SOM) algorithm can be high-dimensional or low-dimensional, and
two different learning rules, which we have called weight dynamics, are
commonly used. The validity of the probabilistic blob model for the high-
dimensional models is discussed in the appendix. A classification of the
high-dimensional model by Obermayer et al. (1990) is given in Table 2. The
low-dimensional models do not fall into the class of one-to-one mappings
considered in the previous section, because the input layer is represented
as a continuous space and not as a discrete set of neurons.

Copyrig[\t ©.2001 All Rights Reserved



»

" Neural Map Formation 705

» *

One learning rule for the high-dimensional SOM algorithm is given by

ﬁ’tp(t) =w,E-1)+ €B;1,Bop, (6.10) l
Dep® (6.11)

Wep(t) = ———=—,
T /T ,0

as used, for example, in Obermayer et al. (1990). B;, denotes the neigh-
borhood function (commonly indicated by k) and B o0 denotes the stimulus
pattern (sometimes indicated by x) with index pg. B,,,,, does not need to have
. ablob shape, so that pp may be an arbitrary index. Output neuron 1 is the
| winner neuron in response to stimulus pattern pp. This learning rule is a
" consistent combination of growth rule Q! and normalization rule Z! and
~ an objective function exists, which is a good approximation to the extent
| that the probabilistic blob model is valid.
The second type of learning rule is given by

Wep(t +1) = ey (#) + €Br1y (Bppy — Wrp (D)), 6.12) 9

as used, for example, in Bauer, Brockmann, and Geisel (1997). For this learn-
ing rule, the weights and the input stimuli are assumed to be sum nor-
malized: 3 w:, = 1and ), By, = 1. For small € this learning rule is
equivalent to

z‘b'cp ®» = wrp(t—1) + EBrronpg (613) ?
Wep(t)
h= et 6.14
wtp( ) Zp’ Ty ® ( )

which shows that it is a combination of growth rule Q! and normalization
rule NZ. Thus, this system is inconsistent, and to formulate it within our
constrained optimization framework N¥ would have to be approximated
by ZL, which leads back to the learning rule in equations 6.10 and 6.11.
There are two ways of going from these high-dimensional models to the
low-dimensional models. The first is simply to use fewer inputneurons (e.g.,
two). A low-dimensional input vector is then represented by the activities
of these few neurons. However, since the low-dimensional input vectors are
usually not normalized to homogeneous mean activity of the input neurons
and since the receptive and projective fields of the neurons do not codevelop
in a homogeneous way, the probabilistic blob model is usually not valid.
A second way of going from a high-dimensional model to a low-dimen-
sional modelis by considering the low-dimensional input vectors and weight
vectors as abstract representatives of the high-dimensional ones (Ritter, Mar-
tinetz, & Schulten, 1991; Behrmann, 1993). Consider, for example, the weight
.dynamics in equation 6.12 and a two-dimensional input layer. Let po, bea
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position vector of input neuron p. The center of the receptive field of neuron
7 can be defined as

m; (W) = Z PeWep» (6.15)
)

and the center of the input blob can be defined similarly,
x(Bpy) = Y _ PoBon- (6.16)
p

Notice that the input blobs as well as the weights are normalized, that is,
Y, Bom =land 3  wrp = 1. Using these definitions and given a pair of
blobs at locations pg and 7o, the high-dimensional learning rule (see equa-
tion 6.12) yields the low-dimensional learning rule

m, (Wit + 1)) = Y_ Pp (@) + €Brry B — Wep (1)) (617)
p
= m;(W(t)) + €Bqq (X(Bpo) —my (W(t))) (6.18)
e m(t+1) =m () +eBry (X — M (D)) (6.19

One can first calculate the centers of the receptive fields of the high-dimen-
sional model and then apply the low-dimensional learning rule, or one can
first apply the high-dimensional learning rule and then calculate the centers
of the receptive fields; the result is the same. Notice that thelow-dimensional
learning rule is even formally equivalent to the high-dimensional one and
that it is the rule commonly used in low-dimensional models (Kohonen,
1990). Even though the high- and the low-dimensional learning rules are
equivalent for a given pair of blobs, the overall behavior of the models is
not. This is because the positioning of the output blobs is different in the two
models (Behrmann, 1993). It is clear that many different high-dimensional
weight configurations having different output blob positioning can lead
to the same low-dimensional weight configuration. However, for a high-
dimensional model that self-organizes a topographic map with point re-
ceptive fields, the positioning may be similar for the high- and the low-
dimensional models, so that the stable maps may be similar as well.

These considerations show that only the high-dimensional model in
equations 6.10 and 6.11 can be consistently described within our constrained
optimization framework. The high-dimensional model of equation 6.12 is
inconsistent. The probabilistic blob model in general is not applicable to
low-dimensional models, because some assumptions required for its deriva-
tion are not valid. The simple relation between the high- and the low-
dimensional model sketched above holds only for the learning step but
not for the blob positioning, though the positioning and thus the resulting
maps may be very similar for topographic maps with point receptive fields.
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7 Conclusions and Future Perspectives

i

The results presented here can be summarized:

¢ A probabilistic nonlinear blob model can behave like a linear corre-
lation model under fairly general conditions (see section 2.1 and the
iappendix). This clarifies the relationship between deterministic non-
inear blob models and linear correlation models and provides an ap-
proximation of the former by the latter.

e Coordinate transformations can transform dynamics with curl into
curl-free dynamics, allowing the otherwise impossible formulation of
an objective function (see section 4). A similar effect exists for normal-
ization rules. Coordinate transformations can transform nonorthogo-
nal normalization rules into orthogonal ones, allowing the normaliza-
t“ion rule to be formulated as a constraint (see section 5.1).

e Growth rules and normalization rules must have a special relationship
in order to make a formulation of the system dynamics as a constrained
ptimization problem possible: the growth rule must be a gradient
low, and the normalization rules must be orthogonal under the same
coordinate transformation (see section 5.1).

o Constraints can be enforced by various types of normalization rules
(see section 5.2), and they can even be implicitly introduced by coor-
dinate transformations (see section 5.2.4) or the activity dynamics (see
ection A.2). .

¢ Many all-to-all connected models from the literature can be classified
within our constrained optimization framework based on only four
terms: L,Q, I, and N (Z) (see section 6.2). The linear term L has rarely
been used, but it can have a specific function that may be useful in
iture models (see section 6.5).

o Models may differ considerably in their weight dynamics and still
sblve the same optimization problem. This can be revealed by coor-
dinate transformations and by comparing the different but possibly
equivalent types of normalization rules (see section 6.4). Coordinate
transformations make it in particular possible to optimize the dynam-
i(j:s without changing the stable fixed points.

e The constrained optimization framework provides a convenient for-
malism to analyze functional aspects of the models (see sections 6.3,
6.‘5, and 6.6).

¢ The constrained optimization framework for all-to-all connected mod-
els presented here is closely related to approaches for finding optimal
one-to-one maps (see section 6.7) but is not easily adapted to the self-
organizing map algorithm (see section 6.8).
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o Models of neural map formation formulated as constrained optimiza-
tion problems provide a unifying framework. It abstracts from arbi-
trary differences in the design of models and leaves only those dif-
ferences that are likely to be crucial for the different structures that
emerge by self-organization.

It is important to note that our constrained optimization framework is
unifying in the sense that it provides a canonical formulation independent
of most arbitrary design decisions, for example, due to different coordi-
nate transformations or different types of normalization rules. This does
not mean that most models are actually equivalent. But with the canonical
formulation of the models as constrained optimization problems, it should
be possible to focus on the crucial differences and to understand better what
the essentials of neural map formation are.

Based on the constrained optimization framework presented here, a next
step would be to consider specific architectures with particular effective lat-
eral connectivities and to investigate the structures that emerge. The role of
parameters and effective lateral connectivities might be investigated ana-
lytically for a variety of models by means of objective functions, similar to
the approach sketched in section 6.3 or the one taken in MacKay and Miller
(1990).

We have considered here only three levels of abstraction: detailed neural
dynamics, abstract weight dynamics, and constrained optimization. There
are even higher levels of abstraction, and the relationship between our con-
strained optimization framework and these more abstract models should be
explored. For example, in section 6.7 our objective functions were compared
with other objective functions defined only for one-to-one connectivities.
Another possible link is with Bienenstock and von der Malsburg (1987) and
Tanaka (1990), who have proposed spin models for neural map formation.
An interesting approach is that taken by Linsker (1986), who analyzed the
receptive fields of the output neurons, which were oriented edge filters of
arbitrary orientation. He derived an energy function to evaluate how the
different orientations would be arranged in the output layer due to lateral
interactions. The only variables of this energy function were the orientations
of the receptive fields, an abstraction from the connectivity. Similar models
were proposed earlier in Swindale (1980), though not derived from a recep-
tive field model, and more recently in Tanaka (1991). These approaches and
their relationships to our constrained optimization framework need to be
investigated more systematically.

A neural map formation model of Amari (1980) could not be formu-
lated within the constrained optimization framework presented here (cf.
section 6.2). The weight growth in this model is limited by weight de-
cay rather than explicit normalization rules, which is possible because the
blob dynamics provides only limited correlation values even if the weights
would grow large. This model is particularly elegant with respect to the
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way it indirectly introduces constraints and should be investigated further.
Our discussion in section 6.3 indicates that the system L+Q might also show
map expansion and weight limitation without any explicit constraints, but
further analysis is needed to confirm this.

The objective functions listed in Table 1 have a tendency to produce
either collapsing or expanding maps. It is unlikely that the terms can be
counterbalanced such that they have the tendency to preserve distances
directly, independent of normalization rules and the size of the layers, as
does the algorithmic objective function in equation 6.9. A solution to this
problem might be found by examining propagating activity patterns in the
input as well as the output layer, such as traveling waves (Triesch, 1995)
or running blobs (Wiskott & von der Malsburg, 1996). Waves and blobs
of activity have been observed in the developing retina (Meister, Wong,
Baylor, & Shatz, 1991). If the waves or blobs have the same intrinsic velocity
inthe two layers, they would tend to generate metric maps, regardless of the
scaling factor induced by the normalization rules. It would be interesting to
investigate this idea further and derive correlations for this class of models.

Andther limitation of the framework discussed here is that it is confined
to second-order correlations. As von der Malsburg (1995) has pointed out,
this is appropriate only for a subset of phenomena of neural map forma-
tion, such as retinotopy and ocular dominance. Although orientation tun-
ing can arise by spontaneous symmetry breaking (e.g., Linsker, 1986), a full
understanding of the self-organization of orientation selectivity and other
phenomena may require taking higher-order correlations into account. Tt

- would be interesting as a next step to consider third-order terms in the ob-
jective function and the conditions under which they can be derived from
detailed neural dynamics. There may also be an interesting relationship to
recent advances in algorithms for independent component analysis (Bell &
Sejnowiski, 1995), which can be derived from a maximum entropy method
and is dominated by higher-order correlations.

Finaily, it may be interesting to investigate the extent to which the tech-
niques used in the analysis presented here can be applied to other types of
neural dynamics, such as learning rules. The existence of objective functions
for dynamics with curl may make it possible to formulate more learning
rules within the constrained optimization framework, which could lead to
new insights. Optimizing the dynamics of a learning rule without changing
the set of stable fixed points may be an interesting application for coordinate
transformations.

Appendix: Probabilistic Blob Model

A.1 NoiseModel. Consider theactivity model of Obermayer etal. (1990)
as an abstraction of the neural activity dynamics in section 2.1 (see equa-
tions 2.1 and 2.2). Obermayer et al. use a high-dimensional version of the
self-organizing map algorithm (Kohonen, 1982). A blob B, is located at
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1
a random position pp in the input layer, and the input i.'(pp) received by
the output neurons is calculated as in equation 2.7. A blob By, in the out-
put layer is located at the position 7y of highest input, that is, i;,(pp) =
max, irr(pp). Only the latter step differs in its outcome from the dynamics
in section 2, the maximal input instead of the maximal overlap determining
the location of the output blob.
The transition to the probabilistic blob location can be done by assuming
that the blob B,/ in the output layer is located at 7o with probability

p(0lpo) = iy (p0) = Y WroprBor - (A1)
p/

For the following considerations, the same normalization assumptions as
in section 2.1 are made, which leads to ¥, iz (pp) = 1 and Z,O p(wolpo) =
1 and justifies the interpretation of p(tylpg) as a probability. The effect of
different normalization rules, like those used by Obermayer et al. (1990), is
discussed in the next section. The probabilistic blob location can be achieved
by multiplicative noise 5, with the cumulative density function f(7) =
exp (—1/n), which leads to a modified input I; = 7.7, with a cumulative
density function

fr(:) = exp ( i (p")), (A2)
and a probability density function
a T 'T .T
pes) = f =! gf") exp (-‘ 5”0)). (A3)

Notice that the noise is different for each output neuron but always from
the same distribution. The probability of neuron 1y having larger input I,
than all other neurons 1/, that is, the probability of the output blob being
located at 1, is

p(woloo) = plly, > I VT’ # 10) (A4)
f Pale) ] frlle) dis A5)
U'#1
°°zu,(po)
= exp ——th'(po) (A.6)
0 b
iro(PO)
= A7
Z;lr'(ﬁo) A7
= iz, (o) (since D iv(po) = 1) , (A8)
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which is the desired result. Thus, the model by Obermayer et al. (1990)
can be modified by multiplicative noise to yield the probabilistic blob loca-
i tion behavior. A problem is that the modified input /; has an infinite mean
value, but this can be corrected by consistently transforming the cumulative
density functions by the substitution I, = k2, yielding

fr(kr) =exp (—I—’T(Cgi)) (A9)

for the new modified inputs k., the means of which are finite. Due to the

nonlinear transformation I, = k2, the modified inputs k, are no longer a

product of the original input i, with noise, whose distribution is the same

for allneurons, but each input i, generates a modified inputk, with a nonlin-

early distorted version of the cumulative density function in equation A.2.
The probability for a particular combination of blob locations is

1

R’ (A.10)

p(®0, p0) = p(t0lp0)p(p0) = Y Wy By
P

and the correlation between two neurons defined as the average product of
their activities is

(8:ap) = 3 p(t0, p0)BrryBpmy (A11)
ToLo
1 .-
= Z Z Wroo By po 7 BreoBoso (A12)
T p’

1 -
=z Y Browy,y (Z B,,/,,OB,,,,O) (A.13)
.r/pr 0

1 - .
== Y BiweyBy,,  with By, = > BymBp, (A14)
rlpl o

where the brackets () indicate the ensemble average over a large number of
blob presentations. This is equivalent to equation 2.13if By = Zto By17,Bis.
Thus, the two probabilistic dynamics are equivalent, though the blobs in the
output layer must be different.

A.2 Different Normalization Rules. The derivation of correlations in
the probabilistic blob model given above assumes explicit presynaptic nor-
malization of the form Y, wyy = 1. This assumption is not valid for some
models that use only postsynaptic normalization (e.g., von der Malsburg,
1973). The model by Obermayer et al. (1990) postsynaptically normalizes
the square sum, o wf » = 1, instead of the sum, which may make the
applicability of the probabilistic blob model even more questionable.
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To investigate the effect of these different normalization rules on the
probabilistic blob model, assume that the projective (or receptive) fields of
the input (or output) neurons codevelop in such a way that, at any given
moment, all neurons in a layer have the same weight histogram. Neuron
p, for instance, would have the weight histogram w,/, taken over 7, and
it would be the same as those of the other neurons p’. Two neurons of
same weight histogram have the same number of nonzero weights, and the
square sums over their weights differ from the sums by the same factor c,
for example, Y w?, p = Cr Wy = 1for all p’ with ¢ < 1. The weight
histogram, and with it the factor ¢, may change over time. For instance,
if point receptive fields develop from an initial all-to-all connectivity, the
histogram has a single peak at 1/T in the beginning and has a peak at0and
one entry at 1 at the end of the self-organization process, and c(t) grows
from 1/T up to 1, where T is the number of output neurons.

Consider first the effect of the square sum normalization under the as-
sumption of homogeneous codevelopment of receptive and projective fields.
The square sum normalization differs from the sum normalization by a fac-
tor ¢(#) common to all neurons in the layer. Since the nonlinear blob model
is insensitive to such a factor, the derived correlations and the learning rule
are off by this factor c. Since this factor is common to all weights, the trajec-
tories of the weight dynamics are identical, though the time scales differ by
¢ between the two types of normalization.

Consider now the effect of pure postsynaptic normalization under the
assumption of homogeneous codevelopment of receptive and projective
fields. Assume a pair of blobs is located at pg and 79. With a linear growth
rule, the sum over weights originating from an input neuron would change
according to

W, =) =) BexBom = Bom, (A.15)
T T

since the blob B,,, is normalized to one. Averaging over all input blob po-
sitions yields an average change of

: 1 1
Wp) =3 Y B = 2 (A.16)
00

since we assume a homogeneous average activity in the input layer, that is,
Y4 Bom = 1. A similar expression follows for the postsynaptic sum:

<WT) = ZP(TOv 00) Z BreyBom (A17)

PoT0 P

1
=3 (R S Beamerbon) St (a9
PoT0 rlpl P

Copyrig[\t ©.2001 All Rights Reserved



Neural Map Formation 713

= % ZBno ZBt’to Zwt'p' ZBP'PO ZBPPO (A19) -
% v 4 Po )

- (A.20)
where }_, wry = R/T is assumed due to the postsynaptic normalization
rule and the blobs are normalized with respect to both of their indices. R
and T are the number of neurons in the input and output layer, respec-
tively. This equation shows that each output neuron has to normalize its
sum of weights by the same amount, and it has to do that by a subtractive
normalization rule if the system is consistent. The amount by which each
single weight wy, is changed depends on the number of nonzero weights
an output neuron receives. Since we assume the weight histograms are the
same, each output neuron has the same number of nonzero weights, and
each weight gets corrected by the same amount. Since we also assume same
weight histograms for the projective fields, the sum over all weights origi-
nating from an input neuron is corrected by the same amount for each input
neuron, namely, by 1/R per time unit. Thus, the postsynaptic normalization
rule preserves presynaptic normalization.

It can even be argued that a postsynaptic normalization rule stabilizes
presynaptic normalization. Assume that an input neuron has a larger (or
smaller) sum over its weights than the other input neurons. Then this neu-
ron is likely to have more (fewer)nonzero weights than the other input
neurons. This results in a larger (smaller) negative compensation by the
postsynaptic normalization rule, since each weight is corrected by the same
amount. This then reduces the difference between the input neuron under
consideration and the others. It is important to notice that this effect of sta-
bilizing the presynaptic normalization is not preserved in the constrained
optimization formulation. It may be necessary to use explicit presynaptic
normalization in the constrained optimization formulation to account for
the implicit presynaptic normalization in the blob model.

If the postsynaptic constraint is based on the square sum, then the normal-
ization rule is multiplicative, and the projective fields of the input neurons
need not have the same weight histograms. The system would still preserve
the presynaptic normalization. Notice that the derivation given above does
not hold for a nonlinear Hebbian rule, for example, W, = wy,a.a,.

These considerations show that the probabilistic blob model may be a
good approximation even if the constraints are based on the square sum
instead of the sum and if only the postsynaptic neurons are constrained
and not the presynaptic neurons, as was required in the derivation of the
probabilistic blob model above. The homogeneous codevelopment of re-
ceptive and projective fields is probably a reasonable assumption for high-
dimensional models with ahomogeneous architecture. For low-dimensional
models, such as the low-dimensional self-organizing map algorithm (Ko-
honen, 1982), the assumption is less likely to be valid. However, numerical
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simulations or more detailed analytical considerations are needed to verify
the assumption for any given concrete model.

Acknowledgments

We are grateful to Geoffrey J. Goodhill, Thomas Maurer, Jozsef Fiser, and
two anonymous referees for carefully reading the manuscript and offering
useful comments. L. W. has been supported by a Feodor-Lynen fellowship
by the Alexander von Humboldt-Foundation, Bonn, Germany.

References

Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural
fields. Biol. Cybern., 27, 77-87.

Amari, S. (1980). Topographic organization of nerve fields. Bulletin of Mathemat-
ical Biology, 42, 339-364. -

Bauer, H.-U., Brockmann, D., & Geisel, T. (1997). Analysis of ocular dominance
pattern formation in a high-dimensional self-organizing-map model. Net-
work: Computation in Neural Systems, 8(1), 17-33.

Behrmann, K. (1993). Leistungsuntersuchungen des “Dynamischen Link-Matchings”
und Vergleich mit dem Kohonen-Algorithmus (Internal Rep. No. IR-INI 93-05).
Bochum: Institut fiir Neuroinformatik, Ruhr-Universitit Bochum.

Bell, A.J., & Sejnowski, T. J. (1995). An information-maximization approach to
blind separation and blind deconvolution. Neural Computation, 7, 1129-1159.

Bienenstock, E., & von der Malsburg, C. (1987). A neural network for invariant
pattern recognition. Europhysics Letters, 4(1), 121-126.

Dirac, P. A. M. (1996). General theory of relatwity. Princeton, NJ: Princeton Uni-
versity Press.

Ermentrout, G. B., & Cowan, J. D. (1979). A mathematical theory of visual hal-
lucination patterns. Biological Cybernetics, 34(3), 137-150.

Erwin, E., Obermayer, K., & Schulten, K. (1995). Models of orientation and oc-
ular dominance columns in the visual cortex: A critical comparison. Neural
Computation, 7, 425-468.

Ginzburg, I, & Sompolinsky, H. (1994). Theory of correlations in stochastic neu-
ral networks. Physical Review E, 50(4), 3171-3191.

Goodhill, G. J. (1993). Topography and ocular dominance: A model exploring
positive correlations. Biol. Cybern., 69, 109-118.

Goodhill, G.J., Finch, S., & Sejnowski, T. J. (1996). Optimizing cortical mappings.
In D. Touretzky, M. Mozer, & M. Hasselmo (Eds.), Advances in neural informa-
tion processing systems (Vol. 8, pp- 330-336). Cambridge, MA: MIT Press.

Hiussler, A. F, & von der Malsburg, C. (1983). Development of retinotopic
projections—An analytical treatment. J. Theor. Neurobiol., 2, 47-73.

Horst, R., Pardalos, P. M., & Thoai, N. V. (1995). Introduction to global optimization.
Dordrecht: Kluwer.

Kohonen, T. (1982). Self-organized formation of topologically correct feature
maps. Biol. Cybern., 43, 59-69.

Copyrig[\t © 2001 All Rights Reserved



Neural Map Formation 715

-

Kohonen, T. (1990). The self-organizing map. Proc. of the IEEE, 78(9), 1464-1480.

Konen, W.,Maurer, T., & von der Malsburg, C. (1994). A fast dynamic link match-
ing algorithm for invariant pattern recognition. Neural Networks, 7(6/7), 1019-
1030.

Konen, W., & von der Malsburg, C. (1993). Learning to generalize from single
examples in the dynamic link architecture. Neural Computation, 5(5), 719-735.

Lades, M., Vorbriiggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C.,
Wiirtz, R. P, & Konen, W. (1993). Distortion invariant object recognition in
the dynamic link architecture. IEEE Transactions on Computers, 42(3), 300-311.

Linsker, R. (1986). From basic network principles to neural architecture: Emer-
gence of orientation columns. Ntl. Acad. Sci. USA, 83, 8779-8783.

MacKay, D. J. C., & Miller, K. D. (1990). Analysis of Linsker’s simulations of
He_bbian rules. Neural Computation, 2, 173-187.

Meister, M., Wong, R. O. L, Baylor, D. A, & Shatz, C. J. (1991). Synchronous
butsts of action potentials in ganglion cells of the developing mammalian
retina. Science, 252, 939-943.

Miller, K. D. (1990). Derivation of linear Hebbian equations from nonlinear Heb-
bian model of synaptic plasticity. Neural Computation, 2, 321-333.

Miller, K. D., Keller, J. B., & Stryker, M. P. (1989). Ocular dominance column
development: Analysis and simulation. Science, 245, 605-615.

Miller, K. D., & MacKay, D. J. C. (1994). The role of constraints in Hebbian
learning. Neural Computation, 6, 100-126.

Nowlan, S.J. (1990). Maximum likelihood competitive learning. In D. S. Touret-
zky (Ed.), Advances in neural information processing systems (Vol. 2, pp. 574~
582). San Mateo, CA: Morgan Kaufmann.

Obermayer, K., Ritter, H., & Schulten, K. (1990). Large-scale simulations of self-
organizing neural networks on parallel computers: Application to biological
modelling. Parallel Computing, 14, 381-404.

Ritter, H., Martinetz, T, & Schulten, K. (1991). Neuronale Netze. Reading, MA:
Addison-Wesley.

Sejnowski, T. J. (1976). On the stochastic dynamics of neuronal interaction. Biol.
Cybern., 22, 203-211.

Sejnowski, T. . (1977). Storing covariance with nonlinearly interacting neurons.
J. Math. Biology, 4, 303-321.

Swindale, N. V. (1980). A model for the formation of ocular domance stripes.
Proc. R. Soc. Lond. B, 208, 243-264.

Swindale, N. V. (1996). The development of topography in the visual cortex: A
review of models. Network: Comput. in Neural Syst., 7(2), 161-247.

Tanaka, S. (1990). Theory of self-organization of cortical maps: Mathematical
framework. Neural Networks, 3, 625-640.

Tanaka, S. (1991). Theory of ocular dominance column formation. Biol. Cybern.,
64, 263-272.

Triesch, J. (1995). Metrik im visuellen System (Internal Rep. No. IR-INI 95-05).
Bochum: Institut fiir Neuroinformatik, Ruhr-Universitit Bochum.

von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in
the striate cortex. Kybernetik, 14, 85-100.

von der Malsburg, C. (1995). Network self-organization in the ontogenesis of

Copyright © 2001 All Rights Reserved



716 Laurenz Wiskott and Terrence Sejnowski
¥

the mammalian visual system. In S. F. Zornetzer, J. Davis, and C. Lau (Eds.),
An introduction to neural and electronic networks (pp. 447-463). San Diego: Aca-
demic Press.

von der Malsburg, C., & Willshaw, D. J. (1977). How to label nerve cells so that
they can interconnect in an ordered fashion. Proc. Natl. Acad. Sci. (USA), 74,
5176-5178.

von der Malsburg, C., & Willshaw, D. J. (1981). Differential equations for the
development of topological nerve fibre projections. SIAM-AMS Proceedings,
13,39-47.

Whitelaw, D. J., & Cowan, J. D. (1981). Specificity and plasticity of retinotectal
connections: A computational model. J. Neuroscience, 1(12), 1369-1387.

Willshaw, D. J., & von der Malsburg, C. (1976). How patterned neural connec-
tions can be set up by self-organization. Proc. R. Soc. London, B194, 431-445.

Wiskott, L., & von der Malsburg, C. (1996). Face recognition by dynamic
link matching. In J. Sirosh, R. Miikkulainen, & Y. Choe (Eds.), Lateral in-
teractions in the cortex: structure and function (Chap. 11) [Electronic book].
Austin, TX: UTCS Neural Networks Research Group. Available from
http:/ /www.cs.utexas.edu/ users/nn/web-pubs/htmlbook%6/.

Received April 25, 1997; accepted September 3, 1997.

Copyrig[\t © 2001 All Rights Reserved



LETTER

Communicated by Helge Ritter

Breaking Rotational Symmetry in a Self-Organizing Map
Model for Orientation Map Development

M. Riesenhuber

Department of Brain and Cognitive Sciences and Center for Biological

and Computational Learning, Massachusetts Institute of Technology, E25-221,
Cambridge, MA 02139, U.S.A.

H.-U. Bauer

D. Brockmann

T. Geisel

Max-Planck-Institut filr Stromungsforschung, Postfach 28 53, 37018 Gottingen,
Federal Republic of Germany

We analyze the pattern formation behavior of a high-dimensional self-
organizing map (SOM) model for the competitive projection of ON-
center-type and OFF-center-type inputs to a common map layer. We math-
ematically show, and numerically confirm, that even isotropic stimuli can
drive the development of oriented receptive fields and an orientation map
in this model. This result provides an important missing link in the spec-
trum of pattern formation behaviors observed in SOM models. Extending
the model by including further layers for binocular inputs, we also inves-
tigate the combined development of orientation and ocular dominance
maps. A parameter region for combined patterns exists; corresponding
maps show a preference for perpendicular intersection angles between
iso-orientation lines and ocularity domain boundaries, consistent with
experimental observations.

1 Introduction

Topographic maps are a ubiquitous pattern of organization in the brain.
Among the most intensely investigated such patterns are orientation maps
and ocular dominance maps in the visual cortex. Various models have been
formulated that generate topographic maps as a consequence of activity-
driven self-organization processes (for two recent reviews, see Erwin, Ober-
mayer, & Schulten, 1995; Swindale, 1996). The simulated maps coincide with
observed maps in many aspects. Yet distinctive differences remain between
simulated and observed maps, as well as between simulated maps from
different modeling frameworks. The better we can relate such differences
to specific underlying assumptions, the more differences we can eliminate,
and the more experimental observations we can account for within uni-
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versal modeling frameworks, the more stable our understanding of map
self-organization processes will become.

A few years ago, two map formation models were presented that generate
oriented receptive fields from a competition of ON-center and OFF-center
cell responses in the lateral geniculate nucleus (LGN) (Miller, 1992, 1994;
Miyashita & Tanaka, 1992). These models elegantly explain how orientation-
selective simple cell responses could be due to a self-organization process
driven by nonpatterned input activity and could take place even before
birth. Without discussing any of the details of these models, we note that
their inputs are nonoriented, yet the resulting patterns break this symmetry.

A third, rather widely applied framework for map development is Ko-
honen’s self-organizing map (SOM) algorithm. SOM-based models have
sucessfully accounted for various aspects of visual (Obermayer, Ritter, &
Schulten, 1990; Obermayer, Blasdel, & Schulten, 1992; Goodhill, 1993; Wolf,
Bauer, & Geisel, 1994; Wolf, Bauer, Pawelzik, & Geisel, 1996; Bauer, Brock-
mann, & Geisel, 1997), auditory (Martinetz, Ritter, & Schulten, 1988) and so-
matosensory (Ritter & Schulten, 1986; Andres, Schliiter, Spengler, & Dinse,
1994) map formation. Yet in simulations of SOM-based models for ON-
center- and OFF-center-cell competition, a break of rotational symmetry
has not been observed so far, despite a lengthy search by several groups.
This negative outcome could be the consequence of a suboptimal selection
of parameters, or it could be the fingerprint of a fundamental difference
between SOM-based models and the models by Miyashita and Tanaka, and
by Miller. Clarification of this issue is an interesting problem, not only with
regard to explanations of orientation map development but, in particular,
with regard to theoretical consistency between modeling frameworks.

In this article, we report that SOMs can break rotational symmetry, albeit
in a quite small regime of parameters. Using a recently described analy-
sis technique (Riesenhuber, Bauer, & Geisel, 1996; Bauer et al., 1997), we
first mathematically analyze the pattern formation behavior of the corre-
sponding SOM model. After a brief introduction to the SOM in the second
section, we describe analytical results in the third section. Guided by the
mathematical analysis, we also performed simulations of the model; the re-
sults are given in the fourth section. Finally, we investigate the development
of combined orientation and ocular dominance maps.

2 “High-Dimensional” SOM Model for the Development of
Orientation Maps from Nonoriented Stimuli

Neurons in an SOM are characterized by positions r in a map lattice A and
receptive fields w; in a map input space V. The input space is assumed
to consist of one (or several) layer(s) of input channels. The typically large
number of input channels give rise to the notion of a high-dimensional SOM,
as opposed to a feature map description. As a consequence, stimuli v € V
are activity distributions, and receptive fields w; are synaptic weight distri-
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butions. A stimulus v is mapped onto that neuron s € A, whose receptive
field wg matches v best,

8 = arg rzgz{w, -v}. 2.1)

Presenting a random sequence of stimuli and performing adaptation steps,
Awp = eh(r — 8)(v — wy), 2.2)

the internal shape of individual receptive fields as well as the map layout
self-organize simultaneously. The neighborhood function h(r — s),

—ell2
h(r —8) = exp (— "1'203” ) , (2.3)

ensures that neighboring neurons align their receptive fields; that is, it im-
poses topography on the map. A comprehensive treatment of many the-
oretical and application-related aspects of SOMs can be found in Ritter,
Martinetz, and Schulten (1992) and Kohonen (1995).

Within this general framework, we now consider a projection geometry
analogous to that proposed by Miller (1992, 1994) and Miyashita and Tanaka
(1992). Cells in ON-center and OFF-center input layers project to the map

layer. As would result from a filtering of pointlike retinal stimuli by thalamic
ON-center and OFF-center cells, we assume our stimuli to consist of an

activity peak in one layer, plus an activity annulus in the other layer.

Mathematically, stimuli are represented as difference-of-gaussians (DOG)
(stimulus center position: xp, widths of the two gaussians: 01, relative am-
plitude of the gaussians: k),

—x — 2 Ay — 2
w30 = oxp B o (=0l 24

2(712 05

Furthermore, a,(x; xp) = [a(x; Xo)]+ denotes the activity distribution of the
central peak of the DOG, and a,(x; Xg) = [—a(x; x¢)]+ the annulus-shaped
activity distribution corresponding to the negative part of the DOG ([-]+
is the rectification operator). Naturally, ON-type and OFF-type stimuli are
represented as two-component vectors,

VON = (2.,3,), VOFF = (a,, a,), (2.5)

each component describing the (nonnegative) activity distribution in one
of the input layers. In the simulations, the center positions xo and polarity
(that is, whether the stimulus is von or vopg) are chosen at random.
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3 Mathematical Results on the Formation of Oriented
Receptive Fields

Recently, Riesenhuber et al. (1996) and Bauer et al. (1997) described a new
technique to calculate conditions on stimulus and map parameters for the
emergence of nontrivial patterns in high-dimensional SOMs. This technique
makes use of a distortion measure Ey, which is evaluated for different poten-
tially stable states of the map and is assumed to be minimized by the SOM
algorithm. A crucial feature of the method is the way in which “potentially
stable states” of a SOM are formalized. Although an explicit characteri-
zation of such states in terms of the weight vectors w, seems impossible
without actually simulating the SOM, the states can also be characterized
by the way they distribute stimuli among map neurons (the tesselation).
This is specific to the SOM, where the winner-take-all mapping rule (see
equation 2.1) assigns a particular map neuron to each stimulus.

Denoting by £, all stimuli that are mapped to neuron r (the Voronoi cell
of r), we define a distortion measure,

E, = Zh(r —r)w(r,r), 3.1)
rr
w,¥) = Z Z (v—- V)2 (3.2)
vEQy VEQY

Each term in E, consists of the mean squared difference w(r, r') between
stimuli within the same, or between neighboring, Voronoi cells, weighted
by the neighborhood function h(r - ). The definition of Ey is motivated
by the analogy of SOMs to vector quantizers (see Riesenhuber et al., 1996).
Qualitatively different states of a map yield different values of Ey because
they correspond to different tesselations {2,}. What are the typical tessela-
tions in the present context?

To simplify the analysis, we assume an equal number of ON-center input
channels, OFF-center input channels, and map neurons, with a basically
retinotopic projection. We further assume that the stimulus center positions
xp are constrained to the positions of the input channels, resulting in twice
as many stimuli as map neurons. Three qualitatively different possible map
states can be distinguished:

1. System B:Each neuron responds to both an ON- and an OFF-stimulus,
each located at the same retinal position. This tesselation yields neu-
rons with orientation-insensitive receptive fields.

2. System S: As in system B, each neuron responds to stimuli of both
polarities, but now displaced one step along one retinal coordinate.
The displacement breaks isotropy. It causes the receptive fields to ex-
hibit internal ON-center and OFF-center structure, with orientation
specificity.
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3. ".System O: Each neuron responds to two retinally neighboring stim-
uli of identical polarity. Although this tesselation induces an orienta-
tion specificity, it also breaks the symmetry between ON-center and
OFF-center inputs to each neuron. Neurons segregate into ON-center-
and OFF-center-dominated populations, analogous to an ocular dom-
inance map. While this state is an imaginable (and numerically ob-
served, see below) state of SOMs, we do not consider this state as
biologically interesting.

To evaluate w(r, ') and Ey for these tesselations, we need to consider the
difference &° between two stimuli of same polarity, separated by a distance
of Axp = xo — X,

8(Ax0) = Y (20, X0) — a0 (%, 5))° + (30(x, X0) — 20 (x, ), @33)

and the difference § between two oppositely polarized stimuli,

8(Ax0) = ) (a0(x, X0) — 3%, X))” + (200X, X0) — as(x, X)), (3.4)

X

Using these distances, and exploiting the isotropy with respect to one retinal
coordinate, we obtain for the interaction terms w (see equation 3.2):

wB(Ar) = 85(AP) + 8%(Ar), (3.5)

w3 (AY) = 8°(Ar) + % {8*(Ar — 1) + 8°(Ar + 1)}, (3.6)
1 1 1 1 i

w°(Ar) = Z 5 8'(an + 7 B@r+D+8@ar-n) (3.7)

i=s,a

Inserting equations 3.5-3.7 into equation 3.1 and performing a numerical
summation, we obtain the distortion measures E?, ES, and EQ. This analy-
sis predicts that, depending on the stimulus parameters 01,5, k, and the map
neighborhood parameter o, different final states of the map will be attained.
Figure_lj shows a state diagram in the o, k-plane, at widths o1 = 1, 0y = 2.
At large values of the annulus amplitude , receptive fields segregate into

~ “monopolar” ON- and OFF-receptive fields. Large values of the neighbor-
- hood width o prohibit internal structure of the receptive fields to occur. Only

3
i

. in a rather small regime of o, k-values, the biologically interesting map state

. 8 is attained.

A &

4 Numerical Results

To corroborate the mathematical analysis above and to obtain orientation
maps, we also investigated the model numerically. In a first series we ran
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Figure 1: Analytical (a) and numerical (b) phase diagrams for the SOM orien-
tation map model. The parameters o and k denote the neighborhood width of
the SOM algorithm and the annulus amplitude of the stimuli, respectively. +:
the nonoriented state B. «: the oriented state S. A: the (nonbiological) state O.In
both diagrams, further parameters were o1 = 1, 62 = 2, in the numerical maps
we applied 10° learning steps, learning step size was decreased from €y, = 0.2
to €gna = 0.01, and the neighborhood width ¢ was kept constant during the
simulation.

simulations with 16 x 16 neuron maps, at various values of o and k. Clas-
sifying the resulting receptive fields with regard to the states B, S, O, we
obtained the state diagram depicted in Figure 1b, which corresponds quite
well to the mathematically obtained diagram.

To obtain receptive fields with a fine spatial resolution, we also simulated
maps with 48 x 48-channel input layers, projecting to a 24 x 24-neuron
map layer. Figurg 2.shows exemplary receptive fields of neurons in a 4 x
8 segment of the map. The receptive fields show a multilobed structure
and are clearly oriented. The variation of orientation over the whole map
is shown in an angle map in Figure 3, where the preferred orientation of
each cell is given by a circular color code. As in orientation maps obtained
by optical imaging methods in the cat (Bonhoeffer & Grinvald, 1991) or
monkey (Blasdel & Salama, 1986), we find a patchy arrangement of different
preferred orientations and also pinwheel-like singularities.

In addition to the map of preferred orientation angles of the receptive
fields, we also calculated the phases of the receptive field, that is, the shift
angles that would occur in a Gabor function fit to the receptive field profile
(see the caption for Figure 3). It has been hypothesized that the phase angle
is also arranged in a topographic fashion in the primary visual cortex, witha
topology of the combined orientation and phase stimulus space equivalent
to that of a Klein bottle (Tanaka, 1995). In our simulated maps, we find the
phase angle to vary indeed in a smooth way in many areas of the map (see
the arrows in Figure 3). Phase and orientation values are not correlated.
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Py e

Figure 2: Sample receptive fields of an SOM orientation map (4 x 8 segment
. of a 24 x 24-neuron SOM, with two 48 x 48 input layers, periodic boundary
| conditions). Further parameters of the simulation were: 07 = 3.4, 6, = 6.8,
.k =0.3, width of SOM neighborhood function o = 0.85, 3 x 10° learning steps,
€ = 0.1 — 0.01. For each neuron, the difference between ON-center and OFF-
center cell layer connection strengths is shown as a gray-value image. The gray
background means no connection strength; black and white regions indicate
preferred connections to the ON- or OFF-center layers.

2n-singularities can be found in the phase, at locations other than those of

orientation singularities. All the topological properties we could identify in

our m:‘ép are consistent with Tanaka’s suggestion of the Klein bottle topology.
h

5 Devﬂrelopment of Combined Orientation and Ocular Dominance Maps

Fmally, we complemented the two ON-center and OFF-center input cell
layers,for one eye by two further ON-center and OFF-center cell layers for
the other eye. The repertoire of possible patterns in this extended model
should go beyond merely oriented receptive fields in an orientation map.
It should also include monocular receptive fields and ocular dominance
maps, and combinations of the two types of patterns.

Stimuli in the extended model consist of activity distributions in all four
input Jayers. Although the difference in the shape of the activity distribu-
tions between ON-center and OFF-center layers is the same as before, the
partial stimuli are assumed to be of identical shape in the corresponding
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r

Figure 3: The complete map described in the caption of Figure 2, now depicted
as an angle map using a circular color code for the preferred orientation angles
of each cell. Superimposed on the color-coded orientation map, we show (as
arrows) the phase angle of the receptive fields. The phase angle is calculated
by rotating each receptive field by the inverse of its preferred orientation (so
that the lobes of an ideal bilobed receptive would fall on different sides of the
horizontal meridian after rotation) and then determining the phase shift as com-
pared to a dampened sine wave (i.e., a Gabor filter) of the receptive field profile.
A rightward arrow designates a phase of zero degrees, that is, the receptive field
is bilobed with the positive lobe being in the upper hemisphere after rotation.
An upward arrow represents a phase angle of 90 degrees, that is, a trilobed
receptive field with the negative lobe in the middle. Crosses and circles show
examplary locations of orientation and phase singularities, respectively.

layers for either eye, but attenuated by a factor of ¢, 0 < ¢ < 1, in one
of the eyes (analogous to the assumptions underlying a recently analyzed
SOM-based model for ocular dominance formation; Bauer et al., 1997; see
also Goodhill, 1993). This yields, apart from the random variations of the
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-
stimulus center, four different types of stimuli:

/:'\ (:i\

VLON = »ovLorr=1[ . |,
0

Ty oo )
(c-a. (c-ao\

C-a, C-a,
VR,ON = y  VROFF =

- =)

(5.1)

The analysis technique introduced in section 3 can be applied to this more

- complicated case as well, considering the different tesselation possibilities
* for four stimuli per neuron. To save space, we omit the details of the rather
* lengthy calculations and proceed to a description of the results. Since we
i have five parameters in the model now (01, 02, k for the DOG, ¢ for the

b5

lsch

between-eye correlations, and o as a map control parameter), the full state
diagram cannot be depicted. Instead, we show in Figure 43 a section in the
k-c-plane. Regions with orientation only and with ocular dominance only
are found. Most important, there is a region with a combination of both
orientation and ocular dominance at small values of k and c.

In computer simulations, we found maps with monocular receptive fields,
oriented receptive fields, or combined monocular, oriented receptive fields,
each in the parameter regimes predicted by the analysis (see Figure_4b).
Figure §.shows one combined map in a plot that displays the boundaries
of the iso-ocularity domains superimposed on the color-coded orientation
map.

Determining the transition lines between iso-ocularity regions in the sim-
ulated map, and computing the intersection angles with the iso-orientation
lines at these locations, we compiled an angle histogram (see Figure 6).
Iso-orientation lines intersect the boundaries between iso-ocularity regions
preferably at larger angles, consistent with experimental observations by
Bartfeld and Grinvald (1992) and Obermayer and Blasdel (1993).

6 Discussion

We showed mathematically and numerically how in a high-dimensional
SOM model for the competitive projection of ON-center and OFF-center
inputs to a common map layer, a rotation symmetry of stimuli can be bro-
ken to yield oriented receptive fields. This pattern formation behavior can
be described only in a high-dimensional map formation framework, which
also allows consideration of the internal structure of receptive fields. In low-
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Figure 4: Phase diagram for combined orientation and ocular dominance maps,
as a function of ON-OFF stimulus parameter k and between-eye-correlation
parameter c, at oy = 0.84, 5, = 1.68, o = 1.0. o: states with unoriented receptive
fields. +: oriented, binocular receptive fields. »: monocular receptive fields with
type O ON-center OFF-center cell segregation. [J: monocular, oriented receptive
fields. (a) The analytically obtained diagram. (b) The diagram resulting from
classification of the receptive fields of simulated maps.

dimensional feature map models, where each map dimension corresponds
to a particular stimulus and receptive field parameter, a nontrivial struc-
ture along a particular dimension cannot be obtained if the stimuli have
no extension along this dimension (as is the case for round stimuli with
respect to an orientation dimension). A break of isotropy has already been
observed in other frameworks for map development models (Miyashita &
Tanaka, 1992; Miller, 1992, 1994). The results we describe here for the SOM
framework close a somewhat puzzling gap in the qualitative behavior of
these different frameworks, reducing the relative importance of the specific
mathematical formalizations, and increasing the importance of common
mechanisms.

Our results are based not only on numerical simulations but also on
a mathematical analysis. The coincidence of the mathematically derived
parameter regimes for particular map structures and the numerical obser-
vation of these structures underlines the value of our energy formalism to
analyze pattern formation in high-dimensional SOM models and to guide
simulations of these models. For the case of combined ocular dominance and
orientation maps, the analysis turned out to involve a substantially larger
number of map patterns, which need to be considered. The increase in ef-
fort necessary for the two-variable case suggests that this kind of analysis
is not feasible for maps with three underlying symmetries. For the com-
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counts

30 40 50 60 70 8o
angle of intersection

Figure 6: Histogram of angle of intersection of iso-orientation lines and iso-
ocularity domain boundaries, computed for all cells along iso-ocularity domain
boundaries of the map shown in Figure 5.
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