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Complex networks in natural, social and technological systems generically exhibit an abundance 
of rich information. Extracting meaningful structural features from data is one of the most 
challenging tasks in network theory. Many methods and concepts have been proposed to 
address this problem such as centrality statistics, motifs, community clusters and backbones, 
but such schemes typically rely on external and arbitrary parameters. It is unknown whether 
generic networks permit the classification of elements without external intervention. Here 
we show that link salience is a robust approach to classifying network elements based on a 
consensus estimate of all nodes. A wide range of empirical networks exhibit a natural, network-
implicit classification of links into qualitatively distinct groups, and the salient skeletons have 
generic statistical properties. Salience also predicts essential features of contagion phenomena 
on networks, and points towards a better understanding of universal features in empirical 
networks that are masked by their complexity. 
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Many systems in physics, biology, social science, econom-
ics and technology are best modelled as a collection of 
discrete elements that interact through an intricate, com-

plex set of connections. Complex network theory, a marriage of 
ideas and methods from statistical physics and graph theory, has 
become one of the most successful frameworks for studying these 
systems1–7 and has led to major advances in our understanding of 
transportation8–11, ecological systems12,13, social and communi-
cation networks14 and metabolic and gene regulatory pathways in  
living cells15–17.

One of the challenges in complex network research is the iden-
ti!cation of essential structural features that are typically masked 
by a network’s complexity1,6,18–20. Reducing a large-scale net-
work to its core components, !ltering redundant information and 
extracting essential components are not only critical for e"cient 
network data management. More importantly, these methods are 
o#en required to better understand evolutionary and dynami-
cal processes on networks and to identify universal principles of 
network design or growth. In this context, the notion of central-
ity measures according to which nodes or links can be ranked is 
fundamental and epitomized by the node degree k, the number 
of directly connected neighbours of a node. Many systems, rang-
ing from human sexual contacts21 to computer networks22, are 
characterized by a power-law degree distribution p(k)~k −( 1 + β)  
with an exponent 0 <    2. %ese networks are scale-free23, mean-
ing the majority of nodes are weakly connected and dominated by 
a few strongly connected nodes, known as hubs. Although a vari-
ety of networks can be understood in terms of their topological  
connectivity (the set of nodes and links), a number of systems are 

better captured by weighted networks in which links carry weights 
w that quantify their strengths8,24. An important class of networks 
exhibit both a scale-free degree distribution and broadly distributed 
weights, which in some cases follow a power-law p(w)~w −( 1 + ), 
with 1 <   2.25–27 In addition to hubs, these networks thus possess 
highways. Several representative networks of this class are depicted 
in Fig. 1. Understanding the essential underlying structures in these 
networks is particularly challenging because of the mix of link and 
node heterogeneity.

Although classi!cations of network elements according to 
degree, weight or other centrality measures have been employed in 
many contexts9,28–30, this approach comes with several drawbacks. 
%e qualitative concepts of hubs and highways suggest a clear-cut, 
network-intrinsic categorization of elements. However, these cen-
trality measures are typically distributed continuously and generally 
do not provide a straightforward separation of elements into quali-
tatively distinct groups. At what precise degree does a node become 
a hub? At what strength does a link become a highway? Despite  
signi!cant advances, current state-of-the-art methods rely on system- 
speci!c thresholds, comparisons to null models or imposed topolog-
ical constraints6,11,31–33. Whether generic heterogeneous networks 
provide a way to intrinsically segregate elements into qualitatively 
distinct groups remains an open question. In addition to this funda-
mental question, centrality thresholding is particularly problematic 
in heterogeneous networks as key properties of reduced networks 
can sensitively depend on the chosen threshold.

Here we address these problems by introducing the concept  
of link salience. %e approach is based on an ensemble of node- 
speci!c perspectives of the network, and quanti!es the extent to 
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Figure 1 | Generic statistical properties of heterogeneous complex networks. (a) Geographical representation of the worldwide air traffic network 
(top), black dots represent airports, links represent passenger flux between them, link weights wij are colour encoded from dark (weak) to white (strong). 
Networks on the lower left and right represent the Florida Bay food web and the World trade network, respectively. Nodes in the food web are species and 
links represent the exchange of biomass; in the trade network nodes are countries and links quantify exchange in assets measured in USD. (b) Relative 
frequencies f(w) = kwlp(w/kwl) and p(b) of link weights w and link betweenness b of representative transportation, biological, ecological, social, and 
economic networks. Link weights are normalized by the mean weight kwl. Details on each network are provided in Methods. In all networks link weights 
and betweenness are distributed across many orders of magnitude, and both statistics exhibit heavy tails. The substantial variability in these quantities is 
also reflected in their coefficient of variation (see Table 1).
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which a consensus among nodes exists regarding the importance 
of a link. We show that salience is fundamentally di&erent from 
link betweenness centrality and that it successfully classi!es links 
into distinct groups without external parameters or thresholds. On 
the basis of this classi!cation, we introduce the high-salience skel-
eton (HSS) of a network and compute this structure for a variety 
of networks from transportation, biology, sociology and econom-
ics. We show that despite major di&erences between representative 
networks, the skeletons of all networks exhibit similar statistical and 
topological properties and signi!cantly di&er from alternative back-
bone structures such as minimal spanning trees. Analysing tradi-
tional random network models, we demonstrate that neither broad 
weight nor degree distributions alone are su"cient to produce the 
patterns observed in real networks. Furthermore, we provide evi-
dence that the emergence of distinct link classes is the result of the 
interplay of broadly distributed node degrees and link weights. We 
demonstrate how a static and deterministic analysis of a network 
based on link salience can successfully predict the behaviour of 
dynamical processes. We conclude that the large class of networks 
that exhibit broad weight and degree distributions may evolve 
according to fundamentally similar rules that give rise to similar 
core structures.

Results
Link salience. Weighted networks like those depicted in Fig. 1 can 
be represented by a symmetric, weighted N×N matrix W, where N is 
the number of nodes. Elements wij 0 quantify the coupling strength 
between nodes i and j. Depending on the context, wij might re(ect 
the passenger (ux between locations in transportation networks, the 
synaptic strength between neurons in a neural network, the value of 
assets exchanged between !rms in a trade network or the contact 
rate between individuals in a social network.

Our analysis is based on the concept of e&ective proximity  
dij de!ned by the reciprocal coupling strength dij = 1/wij.  
E&ective proximity captures the intuitive notion that strongly 
(weakly) coupled nodes are close to (distant from) each other34.  
It also provides one way to de!ne the length of a path p that  
connects two terminal nodes (n1,nk) and consists of K − 1 legs  
by a sequence of intermediate nodes ni, and connections wnini 1 0.  
%e shortest path minimizes the total e&ective distance   
l i

K
nini= 1

1
1d  and can be interpreted as the most e"cient route 

between its terminal nodes35,36; this de!nition of shortest path is 
used throughout this paper. In networks with homogeneous weights, 
shortest paths are typically degenerate and many di&erent shortest 
paths coexist for a given pair of terminal nodes. In heterogene-
ous networks with real-valued weights shortest paths are typically 
unique. For a !xed reference node r, the collection of shortest paths 
to all other nodes de!nes the shortest-path tree (SPT; T(r)), which 
summarizes the most e&ective routes from the reference node r to 
the rest of the network. T(r) is conveniently represented by a sym-
metric N×N matrix with elements tij(r) = 1 if the link (i,j) is part of 
at least one of the shortest paths and tij(r) = 0 if it is not.

%e central idea of our approach is based on the notion of the 
average SPT as illustrated in Fig. 2a. We de!ne the salience S of a 
network as

S T
N

T k
k

1 ( )

so that S is a linear superposition of all SPTs. S can be calculated 
e"ciently using a variant of a standard algorithm (see Supplemen-
tary Methods). According to this de!nition, the element 0 sij 1  
of the matrix S quanti!es the fraction of SPTs the link (i,j) partici-
pates in. As T(r) re(ects the set of most e"cient paths to the rest 
of the network from the perspective of the reference node, sij is a 

(1)(1)

consensus variable de!ned by the ensemble of root nodes. If sij = 1, 
then link (i,j) is essential for all reference nodes, if sij = 0 the link has 
no role and if, say, sij = 1/2 then link (i,j) is important for only half 
the root nodes. Note that although S is de!ned as an average across 
the set of SPTs, it is itself not necessarily a tree and is typically dif-
ferent from known structures such as minimal spanning trees (see 
Supplementary Fig. S1, Supplementary Table S3 and Supplementary 
Methods).

Robust classi!cation of links. %e most important and surprising 
feature of link salience is depicted in Fig. 2c. For the representative 
set of networks, we !nd that the distribution p(s) of link salience 
exhibits a characteristic bimodal shape on the unit interval. %e net-
works’ links naturally accumulate at the range boundaries with a 
vanishing fraction at intermediate values. Salience thus successfully 
classi!es network links into two groups: salient (s 1) or non-salient 
(s 0), and the large majority of nodes agree on the importance of a 
given link. As essentially no links fall into the intermediate regime, 
the resulting classi!cation is insensitive to an imposed threshold, 
and is an intrinsic and emergent network property characteristic of 
a variety of strongly heterogeneous networks. %is is fundamentally 
di&erent from common link centrality measures such as weight 
or betweenness that possess broad distributions (see Fig. 1b), and 
which require external and o#en arbitrary threshold parameters for 
meaningful classi!cations.32,33

%e salience as de!ned by equation (1) permits an intuitive de!-
nition of a network’s skeleton as a structure, which incorporates the 
collection of links that accumulate at s 1. Fig. 2b depicts the skel-
eton for the networks of Fig. 1a. For all networks considered, only a 
small fraction of links are part of the HSS (6.76% for the air tra"c 
network, 6.5% for the food web and 2.39% for the world trade net-
work), and the topological properties of these skeletons are remark-
ably generic. Note that technically a separation of links into groups 
according to salience requires the de!nition of a threshold (e.g., we 
chose the centre of the salience range for convenience). %e impor-
tant feature is that the resulting groups are robust against changes 
in the value, as almost no links fall into intermediate ranges. Con-
sequently the point of separation is almost arbitrary, yields almost 
identical skeletons for threshold ranges of 80% of the entire range. 
One of the common features of these skeletons is their strong disas-
sortativity, irrespective of the assortativity properties of the corre-
sponding original network (see Table 1). Furthermore, all skeletons 
exhibit a scale-free degree distribution

p k kHSS HSS( ) ( )1

with exponents 1.1  HSS  2.5 (see Table 1 and Supplementary  
Fig. S2). As only links with s 1 are present in the HSS, the degree 
of a node in the skeleton can be interpreted as the total salience of 
the node. %e collapse onto a common scale-free topology is par-
ticularly striking as the original networks range from quasiplanar 
topologies with small local connectivity (the commuter network) 
to completely connected networks (worldwide trade). Note that 
the lowest exponent (weakest tail) is observed for the commuter 
network, as in a quasiplanar network the maximum number of 
salient connections is limited by the comparatively small degree 
of the original network. %e scale-free structure of the HSS conse-
quently suggests that networks that possess very di&erent statistical  
and topological properties and that have evolved in a variety of  
contexts seem to self-organize into structures that possess a robust, 
disassortative backbone, despite their typical link redundancy.

Although these properties of link salience are encouraging and 
suggest novel opportunities for !ltering links in complex weighted 
networks, for understanding hidden core sub-structures and sug-
gest a new mechanism for de!ning a network’s skeleton, a number 

(2)(2)
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of questions need to be addressed and clari!ed for the approach to 
be viable. First, a possible criticism concerns the de!nition of sali-
ence from SPTs, which suggests that sij can be trivially obtained 
from link betweenness bij, for example, by means of a non-linear 
transform. Second, a bimodal p(s) may be a trivial consequence of 
broad weight distributions, if for instance large weights are typically 
those with s 1. Finally, the observed bimodal shape of p(s) could 
be a property of any non-trivial network topology such as simple 
random weighted networks. In the following, we will address each 
of these concerns.

Salience and betweenness. %e betweenness bij of a link (i,j) is the 
fraction of all ~N2 shortest paths that pass through the link, whereas 
the salience sij is the fraction of N SPTs T(r) the link is part of. 
Despite the apparent similarity between these two de!nitions, both 

quantities capture very di&erent qualities of links, as illustrated in 
Fig. 3. Betweenness is a centrality measure in the traditional sense40, 
and is a&ected by the topological position of a link. Networks o#en 
exhibit a core-periphery structure41 and the betweenness measure 
assigns a greater weight to links that are closer to the barycentre of 
the network39. Salience, on the other hand, is insensitive to a link’s 
position, acting as a uniform !lter. %is is illustrated schemati-
cally in the random planar network of Fig. 3a. High betweenness  
links tend to be located in the centre of the planar disk, whereas 
high salience links are distributed uniformly. A given shortest path 
is more likely to cross the centre of the disk, whereas the links  
of a SPT are uniformly distributed as they have to span the full 
network by de!nition. A detailed mathematical comparison of 
betweenness and salience is provided in the Methods. Fig. 3c depicts 
the typical relation of betweenness and salience in a correlogram for 
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Figure 2 | Computation of link salience and properties of the HSS. (a) For each reference node r in the weighted network on the left, the SPT T(r) is 
computed. The superposition of all trees according to equation (1) assigns a value sij to each link in the original network. Salience values are shown on the 
right with link colour: red is high salience and grey is low. (b) The collection of high-salience links (red) for the networks shown in Fig. 1. The full networks 
are shown in grey. (c) The relative frequency p(s) of non-zero salience values s. The distribution p(s) is bimodal in all networks under consideration.  
This key feature of bimodality of p(s) provides a plausible, parameter-insensitive classification of links, salient (s 1) versus non-salient (s 0), and implies 
that nodes in these networks typically agree whether a link is essential or not. The HSS is defined as the collection of links that accumulate near s 1.  
Upper and lower insets depict, respectively, the degree distribution p(k) of the HSSs and mean next-neighbour degree kknnl as a function of node  
degree k. The HSS degree distribution is typically scale-free (see Supplementary Fig. S2) and the skeletons are typically strongly disassortative. Note 
that although they may be, and often are, divided into multiple components, the largest connected component of the skeleton typically dominates. This 
connectedness is not imposed, but is an emergent property of salience. (See Supplementary Table S2).
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the worldwide air tra"c network. %e data cloud is broadly distrib-
uted within the range of possible values given by the inequalities 
(see Supplementary Methods)

s N b s/ / .2 2

Within these bounds no functional relationship between b and s 
exists. Given a link’s betweenness b, one generally cannot predict 
its salience and vice versa. In particular, high salience links (s 1) 
possess betweenness values ranging over many scales. %e spread 
of data points within the theoretical bounds is typical for all the 
networks considered (see Supplementary Fig. S3). Links tend to 
collect at the right-hand edge, corresponding to the upper peak in 
salience, and in particular at the lower right corner of the wedge-
shaped region, corresponding to the heretofore unexplained peak 
in betweenness exhibited by several of the networks (cf. Fig. 1 and 
the dashed line in Fig. 3b). %ese edges have a maximal salience (all 
nodes agree on their importance) but the smallest betweenness pos-
sible, given this restriction (they are not well represented in the set 
of shortest paths). Such edges are the spokes in the hub-and-spoke 
structure: they connect a single node to the rest of the network, but 
are used by no others, and they are an essential piece of the HSS, as 
severing them removes some node’s best link to the main body of 
the network. %e presence of such links in the HSS explains why 
the weight values of s 1 edges span such a wide range, as a link may 
have relatively low weight and yet be some node’s most important 
connection.

Fig. 3d tests the hypothesis that strong link weights may yield 
strong values for salience. We observe that link betweenness is 
positively correlated with link weight and roughly follows a scal-
ing relation w~bγ with 0.2, in agreement with previous work on 
node centrality42. %is is not surprising as high weight links are by 
de!nition shorter and tend to attract shortest paths. In contrast, 
link weights exhibit no systematic dependence on salience, and in 
particular large weights do not generally imply a large salience. In 
fact, for !xed link salience the distribution of weights is broad with 
approximately the same median. Consequently, salience can be con-
sidered an independent centrality dimension that measures di&er-
ent features than correlated centrality measures such as weight and 
betweenness.

Origin of bimodal salience. All the networks we consider feature 
broad link weight distributions p(w) (see Fig. 1b), some of which can 
be reasonably modelled by power laws p(w)~w −(1 +α) with exponents 
for many empirical data sets typically in the range 1 <  < 2 (ref. 38) 
(smaller  corresponds to a broader p(w)). Although it may seem 

(3)(3)

plausible that strong links in the tail of these distributions dominate 
the structure of SPTs and thus cause the characteristic bimodal dis-
tribution of link salience, evidence against this hypothesis is already 
apparent in Fig. 3d: links with high salience exhibit weights across 
many scales, and in particular low weight links may possess high 
salience. Further evidence is provided in Fig. 4a, which depicts the 
salience distribution for fully connected networks for a sequence of 
exponent . For values of  in the range observed in real networks, 
p(s) is peaked near s = 0 and decreases with increasing s. A bimodal 
distribution of s only emerges when  is unrealistically small (  < 1), 
and is much less pronounced than in real networks (cf. Fig. 2). We 
conclude that broad, scale-free weight distributions p(w) alone are 
insu"cient to cause the natural, bimodal distribution p(s) observed 
in real networks.

Another potential source of the observed bimodality in p(s) is 
the topological heterogeneity of a scale-free degree distribution 
p(k)~k −( 1 + β) with 0 <   222,23,43. Fig. 4b provides evidence that 
also a scale-free topology alone does not yield the characteristic 
bimodal salience distribution. In fact, the generic preferential attach-
ment network23 (  = 2) with uniform weights exhibits a distribution 
of salience that is almost the complement of the observed pattern 
with mostly intermediate values of link salience. %e presence of 
hubs implies that any shortest paths seeking out a node in a hub’s 
region will most likely route through that hub, and links emanating 
from this hub are more likely to appear in many SPTs. However, 
the hub-and-spoke structure of a preferential attachment network is 
only approximate; nodes that are at the end of a spoke are still likely 
to have random links to other areas of the network. For this rea-
son, it is not typical in the uniform-weight preferential attachment  
network to !nd links that appear in nearly all SPTs.

However, the observed bimodal distribution p(s) can be gener-
ated in random networks by a combination of weight and degree 
variability, a property characteristic of the class of networks dis-
cussed here. Fig. 4b also depicts p(s) for preferential attachment 
networks that possess a scale-free distribution of both degree k and 
weight w. As the weight distribution becomes broader (decreasing 

), and even in the absence of explicit degree–weight correlations, 
we see the emergence of bimodality in the salience distribution in 
these networks. Topological hubs are more likely to have extremely 
high-weight links simply because they have more links. Even when 
there is a topologically short path terminating at a spoke node that 
does not pass through the corresponding hub, it is less likely to be 
the shortest weighted path. Extreme weights amplify the e&ects 
of hubs by drawing more shortest paths through them. Moreover, 
Fig. 4c demonstrates that the emergence of bimodal salience does 
depend on the interplay between degree and weight distributions: 

Table 1 | Statistical features of the full empirical networks and their high-salience skeletons.

Network Full network Salient skeleton

N r  k k l CV(k) CV(w) r % links bHSS rHSS

Cash flow 3,106 0.076 237.0 1.08 7.72  − 0.137 0.84 1.10  − 0.255
Air traffic 1,227 0.024 29.4 1.30 2.25  − 0.063 6.76 1.60  − 0.302
Shipping 951 0.057 54.3 1.22 7.27  − 0.143 3.66 1.37  − 0.169
Commuting 3,141 0.027 82.3 1.04 20.80 0.017 2.44 2.50  − 0.0813
Neural 297 0.049 14.5 0.87 1.42  − 0.163 13.5 1.61  − 0.308
Metabolic 311 0.027 8.4 1.80 8.56  − 0.253 23.1 1.90  − 0.381
Food web 125 0.246 30.5 0.47 11.80  − 0.117 6.5 1.71  − 0.437
Inter-industry 128 1.000 127.0 0.00 1.70  − 0.022 1.08 1.58  − 0.283
World trade 188 0.446 83.4 0.65 8.85  − 0.602 2.39 1.71  − 0.355
Collaboration 5,835 8.12×10 − 4 4.7 0.96 1.21 0.185 41.9 1.22  − 0.242

Statistics for the full networks include number of nodes N, link density =2L/(N2 − N) (where L is the number of links), mean node degree kkl, coefficients of variation of node degree CV(k) and link 
weight CV(w), and the assortativity coefficient r37. For the high-salience skeletons (HSS), the first column lists the percentage of links from the full network that are also in the HSS, an estimate of the 
scaling exponent38 HSS and the assortativity coefficient rHSS. Further information on network statistics is provided in Supplementary Table S1.



ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1847

NATURE COMMUNICATIONS | 3:864 | DOI: 10.1038/ncomms1847 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

the broader the degree distribution, the narrower the required 
weight distribution.

All of these results support the conclusion that a bimodal sali-
ence distribution is the characteristic of networks with strong 
heterogeneity in both topology and interaction strength, but that 
unweighted networks do not exhibit this property.

Applications to network dynamical systems. %e relevance of 
link salience to dynamical processes that evolve on networks is 
an important issue, and one area of particular interest in network 
research is contagion phenomena. In this context, individuals in a 
population are represented by nodes and interaction propensities 
between pairs of nodes by a weighted network. Contagion phenom-
ena are modelled by transmissions between nodes along the links of 
the network, where the likelihood of transmission is quanti!ed by 

the link weights. %e central question in this class of models is how 
the topological properties of the network shape the dynamics of the 
process. Link salience can also provide useful information about the 
behaviour of such a dynamical system. To illustrate this, we consider 
a simple stochastic susceptible-infected (SI) epidemic model. At any 
given point in time, an infected node i can transmit a disease to 
susceptible nodes at a rate determined by the link weight wij. %e 
details of the model are provided in Methods. We consider an epi-
demic on a planar disk network similar to that shown in Fig. 3a.  
A single node is chosen at random for the outbreak location. At 
every step of the process, each infected node randomly selects a 
neighbour to infect with probability proportional to the link weight; 
eventually the entire network is infected. By keeping track of which 
links were used in the infection process, one obtains the infection 
hierarchy H, a directed tree structure that represents the epidemic 
pathway through the network. As the process is stochastic, each 
realization of the process generates a di&erent infection hierarchy. 
For di&erent initial outbreak nodes and realizations of the process, 
we calculate an infection frequency h for each link: the number of 
times that link is used in the infection process, normalized by the 
number of realizations. %e question is how successfully can link 
salience, a topological quantity, predict infection frequency h, a 
dynamic quantity. Fig. 5 shows the results for the two di&erent link 
weight scenarios described in Methods. %e top panel shows net-
works with link weights narrowly and uniformly distributed around 
a constant value w0; in the bottom panel link, weights are broadly 
distributed according to a power law. In both cases, link salience is 
highly correlated with the frequency of a link’s appearance in infec-
tion hierarchies h, whereas alternative link centrality measures such 
as weight and betweenness are not (see Fig. 5 insets and Supplemen-
tary Information). %e link salience on average gives a much more 
accurate prediction of the virulence of a link than other available 
measures of centrality, suggesting that this type of completely deter-
ministic, static analysis could nonetheless have an important role in 
considering how best to slow spreading processes in real networks.

Discussion
As much recent work in network theory has shown19,20,31,32,  
there is tremendous potential for extracting heretofore hidden 
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links tend to be located near the barycentre of the network,39 whereas 
high-salience links are distributed evenly throughout the network.  
(b) A simple linear chain shows the reason for this effect. A link in the 
centre serves as a shortest-path bridge between all pairs of nodes, and  
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plot is typical of all networks in Fig. 1 (See Supplementary Fig. S3 for 
additional correlograms.) (d) Scatter plots (in light red) of betweenness b 
(left) and salience s (right) versus link weight w in the air traffic network. 
The bottom and top of the lower whiskers, the dot, and the bottom and 
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percentiles, respectively. The dashed line indicates a scaling relationship 
w~b  with 0.2. Although the network exhibits a positive correlation 
between link weight and link betweenness, the HSS incorporates links 
with weights spanning the entire range of observed values; no clear 
correlation of weight with salience exists. These properties are observed 
in the other networks as well.
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information from the complex interactions between the elements of 
a system. However, until now these methods have relied on exter-
nally imposed parameters or null models. Here we have shown 
that typical empirical networks taken from a variety of !elds do in 
fact permit the robust classi!cation of links according to the node-
consensus procedure we introduce, and that this leads naturally to 
the de!nition of a HSS in these networks. Because vanishingly few 
links in empirical networks have intermediate values of salience, the 
identi!cation of the skeleton is insensitive to a salience threshold; 
indeed, if a tunable !ltering procedure is desired other methods may 
be more appropriate. Not all networks possess a skeleton; simple 
unweighted models have a shortest-path structure spread through-
out the links. However, the presence of a skeleton is a generic feature 
of many heterogeneously weighted, empirical networks. We suggest 
that the likely cause in real networks is a hub-and-spoke topological 
structure along with a broad weight distribution, which ampli!es 
the tendency of hubs to capture shortest paths.

We believe that the concept of salience and the HSS will become 
a vital component in understanding networks of the type discussed 
here and the development of network-based dynamical models. 
%e simple SI model we investigate here is only a starting point; 
it may be possible to leverage knowledge of a network’s HSS to 
develop dynamical models that do not require simulation on (or 
even knowledge of) the full network. %e generic bimodal salience 
distribution in this context also implies that in contagion phenom-
ena, only a small subset of links might typically be active even if 
the process is stochastic. %ose links, however, are almost certainly 
active irrespective of the outbreak location and the stochasticity of 
the process, which implies that in this regime the process becomes 
more predictable and the impact of stochasticity is decreased. %is 

e&ect may shed a new light on the impact of stochastic factors in 
disease dynamical processes that evolve in strongly heterogeneous 
networks.

Many of the networks we considered evolved over long periods 
of time subject to external constraints and unknown optimization 
principles. %e discovery that pronounced weight and degree heter-
ogeneity, which are de!ning properties of the investigated networks, 
go hand in hand with generic properties in their underlying skel-
eton indicate that looking for common evolution principles could 
be another promising direction of further research.

Methods
Network data sources. Table 2 gives a brief de!nition of each network we exam-
ine here, and below we provide a summary of the networks along with data sources 
and references.

%e Cash (ow network was constructed from data collected through the 
Where’s George bill-tracking website (http://www.wheresgeorge.com). %e nodes 
are the 3,106 counties in the 48 United States excluding Alaska and Hawaii, and 
the links measure the number of bills passing between pairs of counties per time. 
%is network has been previously analysed6,10,26; see in particular the supplement 
to %iemann et al.6 for a wealth of detailed information regarding the construction 
and statistics of this network, as well as strong evidence for interpreting it as proxy 
for individual mobility. %e network of cash (ow is constructed from ~10 million 
individual bank notes that circulate in the United States.

%e Air tra"c network measures global air tra"c based on (ight data provided 
by OAG Worldwide Ltd. (http://www.oag.com) and includes all scheduled com-
mercial (ights in the world. Nodes represent airports worldwide. Link weights 
measures the total number of passengers traveling between a pair of networks by 
direct (ights per year. %is network is well-represented in the literature8,9,25,43,44; 
we reduce it to 95% (ux as described in Woolley-Meza et al.45 Total tra"c in this 
network amounts to ~3 billion passengers per year.

%e Shipping network quanti!es international marine freight tra"c based  
on data provided by IHS Fairplay (http://www.ihs.com/products/maritime- 
information/index.aspx) which includes itineraries for 16,363 container ships. 
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Nodes represent ports, and links measure the number of commercial cargo  
vessels traveling between those ports during 2007. %e network is available at 
http://www.mathmod.icbm.de/45365.html and further discussion can be found  
in Kaluza et al.46

%e Commuting network is based on surveys conducted by the US Census 
Bureau during the 2000 census, and re(ects the daily commuter tra"c between  

US counties; the data is publicly available at http://www.census.gov/population/
www/cen2000/commuting/!les/2KRESCO_US.zip. Nodes in this network  
represent the counties of the 48 states excluding Alaska and Hawaii, and  
links measure the number of people commuting between pairs of counties  
per day.

%e Neural network is derived from the Caenorhabditis elegans nematode. 
Nodes represent neurons, and links measure the number of synapses or gap junc-
tions connecting a pair of neurons. Experimental data is described in White et al.47 
and analysed in Watts and Strogatz 48; the network is available at http://www- 
personal.umich.edu/mejn/netdata/.

%e metabolic network measures interactions in the bacterium Escherichia 
coli16,49. Nodes represent metabolites and links measure e&ective kinetic rates of 
reactions a pair of metabolites participates in. We use only the largest connected 
component of this network.

%e Food web network is a representative food web from a list of publicly 
available data sets of the same type (see http://vlado.fmf.uni-lj.si/pub/networks/
data/bio/foodweb/foodweb.htm for networks in Pajek format, a report50 on trophic 
analysis of the Florida Bay food web available at http://www.cbl.umces.edu/atlss/
FBay701.html and Serrano et al.32 and Radicchi et al.33). Nodes represent species  
in the Florida Bay ecosystem, and links measure the consumed biomass in grams  
of carbon per year across a link.

In the Inter-industry network, nodes represent industrial sectors in the  
United States and their connections are computed from input-output tables 
prepared by the US Bureau of Economic Analysis available at http://www.bea.
gov/industry/io_benchmark.htm. We use data from 2002, the most recent year 
for which measurements are available. Nodes in this network represent particular 
industries (for example, ‘tobacco production’ or ‘cutlery and hand tool manufactur-
ing’) and links measure an average interaction between two industries. Given  
two industries x and y, input-output data measures the amount (United States 
dollars, USD) of input x demands from y to produce one dollar of output, and we 
take the weight of the link connecting x and y to be the geometric mean of the 
input-output demand of x on y and y on x.

%e World trade network is based on data prepared by the United States 
National Bureau of Economic Research and measures the value (in nominal thou-
sands of USD) of goods traded between countries from 1962 to 2000. Nodes repre-
sent countries and links measure the value of goods traded between countries. %e 
data and extensive documentation are available at http://www.cid.econ.ucdavis.
edu/data/undata/undata.html. A series of papers analyses a similar data set from  
a di&erent source33,51–53.

%e Collaboration network is based on coauthorship of academic papers in the 
high-energy physics community from 1995 to 1999. Nodes represent individuals 
and links measure the number of papers coauthored54. %e data is publicly avail-
able at http://www-personal.umich.edu/mejn/netdata/.

Link salience and betweenness centrality. Link salience s and betweenness  
centrality b are based on the notion of shortest paths in weighted networks. Given  
a weighted network de!ned by the weight matrix wij (not necessarily symmetric) 
and a shortest path that originates at node x and terminates at node y it is  
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Figure 5 | Salience predicts infection pathways in stochastic epidemic 
models. The scatter plots show the directed salience sd against the 
normalized frequency of appearance in infection pathways h for each 
link in an ensemble of 100 networks, averaged over 1,000 epidemic 
realizations for each member of the ensemble. As in Fig. 3, the plots are 
divided horizontally into bins, with the heavy black lines indicating quartiles 
within each bin. Insets show link betweenness b versus h, and correlation 
coefficients are listed in Table 3. Top, Weights distributed narrowly and 
uniformly around a constant w0. bottom, Weights distributed according to 
p(w)~w −( 1 + ) with  = 2.

Table 2 | Definition of nodes and links in empirical networks.

Network Nodes Link units

Cash flow Counties, continental 
United States

Number of bills/time

Air traffic Airports, worldwide Number of passengers/
time

Shipping Ports, worldwide Number of cargo 
ships/time

Commuting Counties, continental 
United States

Number of commuters/
times

Neural Neurons, C. elegans Number of synapses and 
gap junctions

Metabolic Metabolites, E. coli Effective kinetic reaction 
rate

Food web Species, Florida Bay 
food web

Exchanged biomass/
time

Inter-industry Industrial sectors, 
United States

Average input required 
for fixed output (USD)

World trade Countries Average value of traded 
assets/time (USD)

Collaboration Scientists Number of co-authored 
papers

The entities represented by nodes, as well as the units measured by link weight, are listed for 
every network.



ARTICLE   NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1847

NATURE COMMUNICATIONS | 3:864 | DOI: 10.1038/ncomms1847 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

convenient to de!ne the indicator function

ij y x( , )
1

0

if link i j is on the shortest path
from x to y
ottherwise

A shortest path tree T(x) rooted at node x can be represented as a matrix with 
elements

T x
y x

ij y
ij

( )
( , )

,

1 0

0

if

otherwise

and salience sij of link i j is given by

s
N

T x T xij
x

ij ij V
1 ( ) ( )

where · v denotes the average across the set of root nodes x.
Betweenness, on the other hand, is de!ned according to

b
N

y x y xij
x y

ij ij V
1
2 2

,
( , ) ( , )

where V2 denotes the average over all N2 pairs of terminal nodes. %e relation  
of betweenness and salience can be made more transparent by rewriting this  
expectation value as a sequential average over all nodes,

b
N

b xij ij
x

1 ( )
 

with

b x
N

y x y xij ij ij Vy
( ) ( , ) ( , )1

!xing root node x. %us, bij(x) is the conditional betweenness of link i j if the set 
of shortest paths is restricted to those terminating at x. From this it follows that

b x yij ij V V
( , )

Comparing (5) with (4) we see that the di&erence of salience and betweenness is 
equivalent to the di&erence in the shortest path trees Tij(x) and the conditional 
betweenness bij(x), whereas all links in the SPT are weighted equally, links with 
non-zero conditional betweenness tend to become less central as the links become 
further separated from the root node x. Formally, we can write

s x y

b x y

ij ij V V

ij ij V V

( , )

( , ) ,

with (x) = 1 if x > 0 and (x) = 0 otherwise.

Epidemic simulations. To determine the relevance of link salience to contagion 
phenomena on networks, we investigated the correlation of link salience and the 
frequency at which links participate in a generic contagion process that spreads 
through planar, random triangular networks.

Each network consists of N = 100 nodes distributed uniformly at random in a 
planar disk; the links of the network are given by the Delaunay triangulation of the 
nodes. %e planar distance between nodes is roughly proportional to the number 
of links in a shortest (network) path between them. A representative example 
of this type of topology is shown in Fig. 3a. We consider two di&erent weight 
scenarios:

1.  Quasi-homogeneous weights: Each link is assigned a unit weight w modi!ed 
by an additive, small perturbation 

w 1

where  is uniformly distributed in the interval ( − 0.01, 0.01)

(4)(4)

(5)(5)

(6)(6)

2.  Broadly distributed weights: Each link is assigned a random weight from the 
distribution with PDF

p w w( ) .3

We simulate a stochastic SI epidemic process. A single stochastic realization of 
the process is generated as follows: given a network represented by the symmetric 
weight matrix wij, which quanti!es the interaction strength of a pair of nodes, we 
de!ne the probability Pij that node j infects node i in a !xed time interval t 

P p i jij ij .

where    < 1/ t is the infection rate and p w wij ij i ij= / . Time proceeds in 
discrete steps; at each step each infected node j chooses an adjacent node to infect 
at random with probabilities given by Pij. If node j infects a susceptible node i, then 
the link (j,i) is added to the infection hierarchy H, which can be represented as a 
matrix Hji. In the long-time limit, every node is infected, and H is a tree structure 
recording the !rst infection paths from the outbreak location s to every other node.

For a given network, we compute R = 1,000 di&erent epidemic realizations with 
random outbreak locations sk, resulting in an ensemble of infection hierarchies 
H (k)mn. %e key question is, how frequently does a link in the network participate  
in an epidemic, and we de!ne the infection frequency of a link as

h
R

Hmn
k

R
mn
k1

1

( )

We compute the infection frequency for 100 random networks under each weight 
scenario, and Fig. 5 illustrates the degree to which the directed salience smn is a  
predictor of the dynamic quantity hmn. %e correlation of hmn with directed 
salience and the two measures of centrality we consider here, weight wmn and 
betweenness bmn, is shown in Table 3. 
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