
1 Calibration against independent human
travel datasets

1.1 Calibration against United States Bureau of Transportation
Statistics Data

102 103
100

101

102

distance [km]

fre
qu

en
cy

 [%
]

BTS data
Bank notes

Figure 1.1: Histrograms comparing the travelling data published by the BTS with short time bank note
dispersal. The symbols denote the percentage of distances travelled within the limits of the categories
listed in table 1.1 as a function of the lower bound of the distance bins.

Along an independent line we have compared our results to data published by the United States Bureau
of Transportation Statistics (BTS, www.bts.gov). The BTS has evaluated 2,617,126 round trip distances
of at least 50 miles. Details of the survey can be found in Table 1-39 in the sectionNational Transporta-
tion Statisticsat www.bts.gov. Although the BTS dataset is large, the movements were histogrammed
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with a low spatial resolution: The distancesd travelled were grouped into bins:

25 miles < d < 100 miles
100 miles < d < 150 miles
150 miles < d < 250 miles
250 miles < d < 500 miles
500 miles < d < 1000 miles
1000 miles < d

(1.1)

We have computed the same histogram from the short time (∆t < 2 days) bank note dispersal, the
results of which are shown in Fig. 1.1. The BTS data agrees well with the bank note dispersal data, thus
confirming our results. We would like to point out, that our data permits a much higher spatial resolution
than those published by the BTS.

1.2 Correlation of bank note transport and long distance aviation
travel

Figure 1.2: The civil aviation network of the United States. The 102 largest airports are depicted by
red symbols. Blue lines represent connections between airports. The entire network consists of 2,743
weighed connections transporting approximately 3.9 million passengers per day.

In order to verify our results we compared the transport of bank notes with passenger flux on the US
aviation network (Fig. 1.2). In this comparison we considered approx. 95% of the entire US-aviation net-
work. This network can be represented by a matrixW each elementWij of which represents the number
of passengers travelling between airporti andj per unit time. The network represents a subnetwork of
the entire worldwide aviation network which was recently employed in a study of the worldwide spread
of human infectious disease [1].

The flux matrixWij represents an approximate measure for the short time travelling behavior of hu-
mans on large geographical scales between urban areas in the United States. If the inference from bank
note dynamics to humans is valid, one expects the matrixWij to correlate significantly with the flux of
bank notes between nodesi andj. The transport of bank notes can be represented by a matrix element
Mij , i.e. the number of bank notes which travelled fromi to j in a short period of time∆t. This number
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Figure 1.3: The correlation between human long distance travel and short time bank note transport. For
the states n =Georgia, Pennsylvania, Texas and Michigan each panel depicts the number of passengers
W̃mn travelling to target states per day versus the number of bank notes M̃mn transported within a time
interval ∆t = 4 weeks (blue symbols). The red dashed line represents a linear relationship.

can be extracted from our bill tracking dataset. In order to obtain reliable statistics, we computed the
flux of passengers on one hand and bank notes on the other between 48 states. For each staten we
determined the number of passengersW̃mn and bank notes̃Mmn which travelled to statem from the
underlying matricesWij andMij , respectively.

Fig. 1.3 depicts scatter plots of̃Wmn versusM̃mn for four representative states, i.e.n =Georgia,
Pennsylvania, Texas and Michigan on a log-log scale. Flux elements for which eitherM̃mn = 0 or
W̃mn = 0 we excluded. Apart from fluctuations, the scatter plots are in agreement with a linear relation
between human and bank note dispersal which supports the idea put forward in this work. Of course, an
exact proportionality can not be expected. For example passenger flux between geographically adjacent
states is less than bank note flux as bank notes primarily travel by other means of transportation (car, train)
between such states. On the other hand, passenger flux to an airport with a catchment area overlapping
with a number of geographically small but highly populated states (New England States such as Rhode
Island, Delaware, etc.) is larger than the associated bank note dispersal. In order to obtain a significant
flux of bank notes we had to increase the inter report time interval to four weeks. Despite these and other
error sources, the correlation is significantly positive.

The degree of correlation can be quantified by the correlation coefficient

R =

〈
W̃mn M̃mn

〉
−

〈
W̃mn

〉 〈
M̃mn

〉
√

(
〈
W̃ 2

mn

〉
−

〈
W̃mn

〉2
) (

〈
M̃mn

〉
−

〈
M̃mn

〉2
)
. (1.2)

For perfectly correlated and anti-correlated quantitiesR = 1 andR = −1, respectively. For statistically
independent variablesR = 0. The correlation coefficient for all 48 States individually and together is
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listed in Table 1. The transport of passengers and bank notes to all other states exhibit a significant degree
of correlation with an overall correlation coefficient of approximately0.5.

State R # target statesm State R # target statesm

All States 0.47 882

Illinois 0.51 37 Connecticut 0.03 17

Kentucky 0.57 36 New Mexico 0.42 16

Georgia 0.67 34 Nebraska 0.73 16

Texas 0.57 33 Oklahoma 0.69 15

New Jersey 0.57 33 Alabama 0.69 15

Minnesota 0.47 33 Iowa 0.64 13

Arizona 0.68 33 South Carolina 0.64 10

Missouri 0.24 32 Kansas 0.50 10

Michigan 0.69 32 Vermont -0.30 9

Nevada 0.79 31 Idaho 0.45 9

Colorado 0.53 31 Mississippi 0.39 8

Florida 0.68 30 Maine 0.34 7

Tennessee 0.67 29 South Dakota 0.93 4

Pennsylvania 0.62 29 Wyoming - -

North Carolina 0.67 27 West Virginia - -

Massachusetts 0.40 26 Rhode Island - -

California 0.63 26 North Dakota - -

Ohio 0.53 25 New Hampshire - -

Wisconsin 0.31 23 Montana - -

Washington 0.49 23 Maryland - -

Utah 0.50 21 Delaware - -

Indiana 0.21 21 Arkansas - -

Louisiana 0.63 20

New York 0.57 17

Table 1.1: The correlation between long distance travel and short time bank note transport. For each
state n and the set of connected target states (i.e. those states m for which both W̃mn and M̃mn are
nonzero) the correlation coefficient (Eq. 1.2) is computed. For all states the correlation is significantly
positive as well as for the entire set of flux connection n→ m (ensemble size: 882).
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1 Lévy flights and continuous time random
walks (CTRW)

1.1 Random walks and Lévy flights

Figure 1.1: Two dimensional trajectories of random walks on large scales. Left: Ordinary random walk
with finite, well defined variance of single steps. Right: A Lévy flight trajectory of index β = 1.

The position of an ordinary random walk is frequently defined as a sum ofN independent identically
distributed displacements∆Xn:

XN =
N∑

n=1

∆Xn. (1.1)

Each displacement is drawn from the same probability density function (pdf)p(∆x). Here it suffices
to discuss symmetric single step pdfs in one dimension. According to the central limit theorem the pdf
WY (y, N) for the scaled position

YN =
XN√

N
(1.2)

is independent ofN in the limit N →∞ and Gaussian, i.e.

lim
N→∞

WY (y, N) = WY (y) =
1√

2πσ2
e−y2/2σ2

, (1.3)

whereσ2is the variance of the single steps∆Xn. From Eq. (1.2) one can read off the universal scaling
relation

XN ∼
√

N (1.4)
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for ordinary random walks. Alternatively one can compute the variance ofXN as a function of step
numberN , 〈

X2
N

〉
= σ2N. (1.5)

Eq. (1.2) in combination with Eq. (1.3) implies that for largeN the pdfWX(x,N) for the positionXN

is asymptotically a spreading Gaussian:

WX(x,N) ∼ 1√
N

WY (x/
√

N). (1.6)

The fact thatWX(x,N) depends on the ratiox/
√

N merely is another way of stating the scaling rela-
tion (1.4). Note however, that for relation (1.6) the existence of the variance of the single steps is no
requirement as opposed to Eq. (1.5). On large scales trajectories of ordinary random walks resemble
ordinary Brownian motion.

Lévy flights belong to a class of random walks for which the central limit theorem does not apply. They
can be defined in a similar fashion as ordinary random walks, i.e. by a sum of independent identically
distributed random increments (Eq. (1.1)). If the single step pdfs possess algebraic tails however, such
that the single step second moment is divergent, i.e.

p(∆x) ∼ 1
∆x1+β

0 < β < 2, (1.7)

a generalization of the central limit theorem, the Lévy Khinchin theorem applies. It states that, if the
position of a Lévy flight is scales according to

YN =
XN

N1/β
, (1.8)

the scaled variable possesses a pdf independent ofN in the limit N →∞, i.e.

lim
N→∞

WY,β(y, N) = WY,β(y). (1.9)

The limiting densityWY,β(y) is referred to as a Lévy stable law of indexβ and is no longer Gaussian. It
can be expressed most easily in Fourier-space:

WY,β(y) =
1
2π

∫
dk e−iky−D|k|β , (1.10)

whereD is some constant. Asymptotically, the limiting density has the same power law behaviour as the
single step distribution,

WY,β(y) ∼ 1
|y|1+β

.

Combining Eqs. (1.8) and (1.10) one can obtain an explicit expression for the pdf ofXN in the limit of
large step number,

WX,β(x,N) ∼ 1
N1/β

WY,β

(
x/N1/β

)
.

This implies that the position of a Lévy flight scales superdiffusively with the step number:

XN ∼ N1/β .

Geometrically, trajectories of Lévy flights are easily distinguished from those of ordinary Brownian
motion. In Fig. 1.1 a two-dimensional trajectory of a Lévy flight is compared with a trajectory of ordinary
Brownian motion.
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1.2 Continuous time random walks

Temporally continuous random walks can be easily constructed from time discrete random walks by
identifying the step numberN with the time elapsedt and the associated time increment∆t = t/N
between successive steps. A generalization of this concept is the continuous time random walk (CTRW),
a simple version of which is defined by two pdfs: one for the spatial displacementsf(∆x) and one
for random temporal incrementsφ(∆t). The CTRW then consist of pairwise random and stochastically
independent events, a spatial displacement∆x and a temporal increment∆t drawn from the combined
pdf

p(∆x,∆t) = f(∆x)φ(∆t).

After N iterations the position of the walker is given by

XN =
N∑

n=1

∆xn

and the time elapsed is

TN =
N∑

n=1

∆tn.

The quantity of interest is the positionX(t) after timet. The pdfW (x, t) for this process can be com-
puted in a straightforward fashion [1] and can be expressed in terms of the pdfsf(∆x) andφ(∆t). The
Fourier-Laplace transform ofW (x, t) is given by

W (k, u) =
1− φ(u)

u (1− φ(u) f(k)))
, (1.11)

whereφ(u) andf(k) denote the Laplace- and Fourier transform ofφ(∆t) andf(∆x), respectively. The
pdf W (x, t) is then obtained by inverse Laplace-Fourier transform

W (x, t) =
1
2π

1
2πi

∫ c+i∞

c−i∞
du

∫
dk eut−ikxW (k, u). (1.12)

W (x, t) may exhibit four different universal behaviours which only depend on the asymptotics off(∆x)
andφ(∆t) and thus the behaviour off(k) andφ(u) for small arguments.

1.2.0.1 Ordinary Diffusion

When both, the variance of the spatial steps and the expectation value of the temporal increments exist
the Fourier- and Laplace transform off(∆x) andφ(∆t) read

f(k) = 1− σ2k2 +O(k4)
φ(u) = 1− τu +O(u2),

whereσ2 andτ are some constants. Inserted into Eq. (1.11) and employing inversion (1.12) one obtains
asymptotically

W (x, t) ∼ 1√
t
e−x2/Dt.

Thus, CTRW are equivalent to Brownian motion on large spatio-temporal scales.
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1.2.0.2 Lévy Flights

When the spatial displacements are drawn from a power-law pdf such as (1.7) the Fourier transform for
small arguments is given by

f(k) = 1−Dβ|k|β +O(k2).

When combined with temporal increments with finite expectation value, the same procedure as outlined
above yields

W (x, t) ∼ 1
t1/β

Lβ(x/t1/β),

whereLβ is a Lévy stable law of indexβ. Consequently, a CTRW with algebraically distributed spatial
steps of infinite variance is equivalent to ordinary Lévy flights with a superdiffusive scaling with time

X(t) ∼ t1/β .

1.2.0.3 Fractional Brownian motion (subdiffusion)

The complementary scenario occurs when ordinary spatial steps (finite variance andf(k) ≈ 1 − σ2k2)
are combined with a power-law in the pdf for temporal increments:

φ(∆t) ∼ 1
∆t1+α

0 < α < 1.

In this case, the time between successive spatial increments can be very long, effectively slowing down
the random walk. The Laplace transform forφ(∆t) is given by

φ(u) = 1−Dαuα,

whereDα is some constant. One obtains for the position of such a random walk

W (x, t) =
1
2π

∫
dke−ikxEα(−Dαk2tα), (1.13)

where the functionEαis the Mittag-Leffler function defined by

Eα(z) =
∞∑

n=0

zn

Γ(1 + αn)
.

It is easily checked that

W (x, t) ∼ 1
tα/2

Gα(x/tα/2),

whereGα is a non-Gaussian limiting function. From this the scaling relation

X(t) ∼ tα/2

can be obtained. Sinceα < 1 these processes are subdiffusive and sometimes referred to as fractional
Brownian motion.

1.2.0.4 Ambivalent processes

The last and most interesting combination of waiting times and spatial steps is the one in which long
waiting times compete and interfere with long range spatial steps, i.e. if bothφ(∆t) andf(∆x) decay
asymptotically as a powerlaw:

f(∆x) ∼ 1
∆x1+β

0 < β < 2
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and

φ(∆t) ∼ 1
∆t1+α

0 < α < 1.

In this case

f(k) = 1−Dβ|k|β +O(k2)
φ(u) = 1−Dαuα +O(u2).

The asymptotic pdf for the position of the ambivalent process can again be expressed in terms of a Fourier
inversion and the Mittag-Leffler function according to

W (x, t) =
1
2π

∫
dke−ikxEα(−Dα|k|βtα). (1.14)

Note, however, the term|k|β in the argument ofEα. From Eq. (1.14) one can extract the scaling relation

X(t) ∼ tα/β.

The ratio of the exponentsα/β resembles the interplay between sub- and superdiffusion. Forβ < 2α
the ambivalent CTRW is effectively superdiffusive, forβ > 2α effectively subdiffusive. Forβ = 2α the
process exhibits the same scaling as ordinary Brownian motion, despite the crucial difference of infinite
moments and a non-Gaussian shape of the pdfW (x, t).

The various types of asymptotic universal behaviours are depicted in Fig. 1.2 which shows a phase
diagram spanned by the temporal exponentα and the spatial exponentβ.

5



α=1

β=2α,β=0

te
m

po
ra

l e
xp

on
en

t α

spatial exponent β

qu
as

idi

ffu
sio

n, 
X(t)

~t

1/2

lévy stable processes
• markovian
• divergent spatial moments
• scale free displacements
• discontinuous sample paths
• temporal moments exist
• superdiffusive 

ordinary diffusion
• markovian
• spatial moments exist
• temporal moments exist
• continuous sample paths
• diffusive

fractional brownian motion
• non markovian
• spatial moments exist
• continuous sample paths
• divergent temporal moments
• subdiffusive 

X(t)~t1/β

X(t)~tα/2

X(t)~t1/2

su
perd

iff
usiv

e

su
bdiff

usiv
e

2α < β

2α > β

ambivalent processes
• non markovian
• divergent spatial moments
• scale free displacements
• scale free waiting times
• divergent temporal moments 

Figure 1.2: The asymptotic universality classes of continuous time random walks defined in the text as a
function of the universality exponents 0 < α < 1 and 0 < β < 2. Lévy flights, fractional Brownian motion
as well as ordinary diffusion are limiting cases of the more general class of ambivalent processes.
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1 Relaxation time estimate for Lévy flights in
a confined two dimensional region

One can estimate the time to reach equilibrium for a two-dimensional Lévy flight in a confined region
of linear extentL as follows. Assume that the single step radial distribution of the random walk can be
approximated by

p∆t(x) = (1−Q)δ(x) + QfδL(x). (1.1)

Here∆t denotes the typical time between single steps,Q the fraction of walkers which jump a distance
d > δL and(1 − Q) the fraction which remains in a disk defined by|x| ≤ δL. The functionfδL(x)
comprises the power-law in the single steps, characteristic for Lévy flights:

fδL(x) = C δLβ |x|−(1+β) |x| ≥ δL.

Inserting this into Eq. (1.1) one obtains thatfδL(x) is normalized to unity and that the normalization
constantC is independent of the microscopic lengthδL. The Fourier-transform ofp(x) is given by

p̃(k) = (1−Q) + Qf̃δL(k).

The Fourier-transform of the probability density functionWN (x) of the walker being located at a position
x afterN steps can be computed in terms ofp̃(k) according to

W̃N (k) = p̃(k)N ≈
(
1−QδLβ|k|β

)N
≈ e−QN |δLk|β . (1.2)

The relaxation time in a confined region is provided by the lowest mode

kmin =
L

2π
.

Inserted into (1.2) withN = t/∆t on obtains

Teq≈ δT/Q (L/2πδL)β .
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1 The mechanisms underlying the spread of
disease and bank notes

The similarities between the geographical spread of infectious diseases and of bank notes are illustrated
in Fig. 1.1. Humans possess home ranges, which can be operationally defined as a geographical patch
in which a person resides most of the time. Humans interact and pass a disease by virtue of overlapping
home ranges or travelling to a home range belonging to someone else. The temporal succession of
steps involved in an idealized model for the spread of disease are the following. An infected person
(red) visits a susceptible individual (blue) and transmits the disease. Subsequently the initially infectious
person returns to his or her home range (forward geographical transport A in Fig. 1.1). Alternatively a
susceptible person (purple) can visit an infected one and take home the disease (backward geographical
transport). Money is transported along the same pathways as indicated in the figure. The symmetry of
the system suggests that both pathways possess identical probability density functions for the distance
traveled.

On small length scales (the size of a few patches in the model) and temporal scales (a small number of
transmissions) the characteristics of disease transport on one hand and bank note transport on the other
may differ. The limiting theorems of random walks (see supplementary information on Lévy flights and
continuous time random walks), however, suggest that on large spatio-temporal scales the distribution of
travelling distances of both disease and bank notes share universal characteristics which determine the
geographical spread.
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Figure 1.1: Qualitative mechanisms of the geographical spread of disease and bank notes. The num-
bers on the left indicate the temporal succession of steps involved. The blue areas indicate home ranges
of three individuals. The spread can occur along pathways A and B. In A an infected individual leaves his
or her home range and visits a susceptible person (blue) which is subsequently infected. The initially in-
fectious person returns home. A third susceptible person (purple) visits the newly infected person (blue),
is infected and returns with the disease (pathway B). As indicated, bank notes travel in a qualitatively
similar fashion.
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