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Dynamics of modern epidemics
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11.1 Summary

The application of mathematical modelling to the

spread of epidemics has a long history and was

initiated by Daniel Bernoulli’s work on the effect of

cow-pox inoculation on the spread of smallpox in

1760 (Bernoulli 1760). While most studies con-

centrate on the temporal development of diseases

and epidemics, their geographical spread is less

well understood. The key question and difficulty is

how to include spatial heterogeneities and to

quantify the dispersal of individuals (Keeling et al.

2001; Smith et al. 2002; Keeling et al. 2003; Lipsitch

et al. 2003). In a well established class of models

spatial dispersal is accounted for by ordinary

diffusion (Murray 1993). This approach admits a

description in terms of reaction-diffusion equa-

tions which generically exhibit epidemic wave-

fronts propagating at constant speeds. These wave

fronts were observed for instance in the geo-

temporal spread of the Black Death in Europe from

1347–50 (Langer 1964; Noble 1974; Mollison 1991;

Grenfell et al. 2001). However, today’s volume,

speed, and non-locality of human travel (Fig. 11.1)

and the rapid worldwide spread of severe acute

respiratory syndrome (SARS) (Fig. 11.2) demon-

strate that modern epidemics cannot be accounted

for by local diffusion models, which are only

applicable as long as the mean distance travelled by

individuals is small compared to the geographical

scope of the model.

In this chapter, we focus on mechanisms of

the worldwide spread of infectious diseases in

a modern world in which humans travel on all

scales. We introduce a probabilistic model which

accounts for the worldwide spread of infectious

diseases on the global aviation network. The analysis

indicates that a forecast of the geographical spread

of an epidemic is indeed possible, provided that

local dynamical parameters of the disease such as

the reproduction number are known. The model

consists of local stochastic infection dynamics and

stochastic transport of individuals on the world-

wide aviation network which takes into account

the national and international civil aviation traffic.

In broad terms, our simulations of the SARS

outbreak are in good agreement with published

case reports. We propose that our model can be

employed to predict the worldwide spread of

future infectious diseases and to identify endan-

gered regions in advance. Based on the con-

nectivity of the aviation network we evaluate the

performance of different control strategies and

show that a quick and focused reaction is essential

to inhibit the global spread of epidemics.

11.2 Local infection dynamics

Mathematical models for the description of epi-

demic outbreaks are rather abundant. Depending

on their purpose they differ in their degree of

detail (Anderson and May 1991). Some models

are designed to reproduce the dynamics of a

specific disease with as much accuracy as possible,

whereas other models are conceived to reveal the

central and general mechanisms underlying an

epidemic outbreak. Almost all models share the

goal of accounting for the time evolution of the

number of infected individuals I(t) in a population

of size N. One of the most successful models is the

SIR-scheme, in which a population of size N is

classified into susceptibles (S), infecteds (I), and

recovered/removed (R) individuals. The quantities
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S, I and R are dynamic, while the total number of

individuals is conserved, that is,

SðtÞ þ IðtÞ þ RðtÞ ¼ N: ð11:1Þ

The infection dynamics are given by

dS

dt
¼ � a

N
SI,

dI

dt
¼ a

N
SI � bI, ð11:2Þ

in which it is assumed that the rate of change of

susceptibles and infected is proportional to the

transmission rate a as well as the concentration

of infecteds and susceptibles, respectively. The

second term in the second equation takes into

account that infecteds recover or are effectively

removed from the population at a rate b. The

time course of recovereds R(t) is given by the

conservation law (11.1). The initial conditions I(t0)

and S(t0) along with the parameters N, a, and b
determine the evolution of the system. The para-

meter R0¼ a/b is known as the reproduction

number of the epidemic, that is, the average

number of infections transmitted by an infected

individual during the period t¼ b� 1 which is the

time an infected individual is infectious. A

requirement for an epidemic to occur (dI/

dt(t0)> 0) is a reproduction number greater than

unity and an initial relative number of susceptibles

S(t0)=N>R�1
0 (assuming that R(t0)¼ 0). The peak

number of infected individuals Imax is given by

Imax/N¼ 1� (1þ ln R0)/R0< 1. Dividing by the

size of the population N and rescaling time as t!b
t the dynamics (11.2) can be expressed in terms of

the relative concentrations s¼ S/N and j¼ I/N of

10 25000

Figure 11.1 Global aviation network. A geographical representation of the civil aviation traffic among the 500 largest international airports in over 100

different countries is shown. Each line represents a direct connection between airports. The gray scale of the connections encodes the number of

passengers per day (see lower gray code) travelling between two airports. The network accounts for more than 95% of the international

civil aviation traffic.
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susceptibles and infecteds respectively and the

reproduction number R0,

dS

dt
¼ �R0sj,

dj

dt
¼ R0sj � j: ð11:3Þ

Time in Eqn (11.3) is measured in units of the time

b� 1 an individual remains infected. The sole

parameter which remains is the reproduction

number R0, the population size has dropped out.

This implies for instance that the dynamics of a

population with N¼ 100,000 and an initial number

of infected I(t0)¼ 100 exhibits the same dynamics

of j(t) as a population with N¼ 10,000 and

I(t0)¼ 10. However, while in population of

N¼ 100,000 an initial number of infected I(t0)¼ 5

makes sense, the analogous initial number of

infecteds I(t0)¼ 0.5 in the population with

N¼ 10,000 makes no sense, since there is no

such thing as half an infected person. The quant-

ization of individuals is not accounted for by the

model defined by Eqn (11.3). In short, ignoring

stochastic effects in finite populations, as we

have done above, can be a crucial drawback. We

will see in the next section that quantization

effects are important for they imply a strong

impact of the fluctuations of the system which are

neglected by the simple deterministic model

above.

11.3 The impact of chance

The above SIR model has been able to account for

experimental data in a number of cases indicating

that Eqn (11.3) incorporate the underlying

mechanism of transmission and recovery dynamics.

However, transmission of and recovery from an

infection are intrinsically stochastic processes and

the deterministic SIR model does not account for

chance fluctuations. These fluctuations are par-

ticularly important at the beginning of an epidemic

when the number of infecteds is very small. The

understanding of this initial phase of an epidemic

is crucial for making any kind of prediction con-

cerning the probability of outbreak in a population

and the typical time lag for a given rate of immig-

ration of infecteds.

0 < 5 < 20 < 100 < 500 < 1000 > 1000

Figure 11.2 Geographical representation of the global spread of probable SARS cases on 30 May 2003 as reported by the World Health

Organization (WHO) and the Centers for Disease Control and Prevention (CDC) (Centers for Desease Control and Prevention 2003). The first cases

of SARS emerged approximately 5 months earlier in mid November 2002 in Guangdong Province, China.
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In order to describe the initial phase, one needs

to cast the dynamics of transmission and recovery

into a probabilistic model. We begin with the

reaction scheme given by

S þ I !a 2I, I !b ;: ð11:4Þ

The first reaction reflects the fact that an encounter

of an infected individual with a susceptible

results in two infecteds at a probability rate a,

the second indicates that infecteds are removed

(recover) at a rate b and effectively disappear

from the population. The quantity of interest is

the probability p(S, I; t) of finding a number S of

susceptibles and I infecteds in a population of

size N at time t. Assuming that the process is

Markovian on the relevant timescales, the dynamics

of this probability are governed by the master

equation

qt pðS, I; tÞ ¼ a
N
ðS þ 1ÞðI � 1ÞpðS þ 1, I � 1; tÞ

þ bðI þ 1ÞpðS, I þ 1; tÞ

� a
N

SI � bI
� �

pðS, I; tÞ: ð11:5Þ

The first term corresponds to the stochastic event

(Sþ 1, I� 1)! (S, I), that is a susceptible is infected,

the second term to the event (S, Iþ 1)! (S, I), that

is an infected recovers from the disease, the third

term to the events (S, I)! (S � 1, I + 1) and

(S, I)! (S, I� 1).

The relation of the probabilistic master Eqn (11.5)

to the deterministic SIR-model (11.3) is not obvious

as the set of equations (11.3) describe the evolution

of the quantities s(t) and j(t) whereas the master

equation (11.5) describes the evolution of the

probability of finding S(t) susceptibles and I(t)

infecteds at time t.

However, this gap can be bridged by invest-

igating the master equation in the limit of a large

but finite population, that is, N�1. In this limit

one can approximate the master equation by a

Fokker–Planck equation by means of an expan-

sion in terms of conditional moments (Kramers-

Moyal expansion, Gardiner 1985) which is a

standard technique in the theory of stochastic

processes. This procedure yields the associated

description in terms of stochastic Langevin

equations

ds ¼ �R0sj dt þ 1ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffi
R0sj

p
dW1ðtÞ ð11:6Þ

dj ¼ R0sj dt � jdt � 1ffiffiffiffi
N

p
ffiffiffiffiffiffiffiffiffi
R0sj

p
dW1ðtÞ

þ 1ffiffiffiffi
N

p
ffiffi
j

p
dW2ðtÞ ð11:7Þ

having rescaled time as t!bt. Here, the independ-

ent Gaussian white noise forces dW1(t) and dW2(t)

(with hdWi(t)i¼ 0 and hdWi(t)
2i¼dt) reflect the

fluctuations of transmission and recovery, respec-

tively. Note that the magnitude of the fluctuations

are / 1=
ffiffiffiffi
N

p
and disappear in the limit N!1. In

this limit the dynamics (11.6) and (11.7) reduce to

the deterministic SIR-model as defined by (11.3)

above. However, for large but finite N a crucial

difference to Eqn (11.3) is apparent: (1) eqns (11.6)

and (11.7) contain fluctuating forces, (2) the

population size is a parameter of the system.

For very large, but finite N one expects from

Eqns (11.6) and (11.7) that the impact of the noise

is small. However, a careful analysis shows that

even in this regime, the noise plays a prominent

role in the initial phase of an epidemic outbreak

and cannot be neglected. Qualitatively this can be

understood as follows: assume that initially nearly

the entire population is susceptible, that is, s� 1

and that the disease has an R0> 1. According to

Eqns (11.6) and (11.7) the expected change of the

relative number of infecteds hDji in a short time

interval Dt is approximately given by

hDji � ðR0 � 1Þj0Dt, ð11:8Þ

where j0 is the initial relative concentration of

infecteds. The relative typical variability of the

change Dj relative to the expected change is given

by the standard deviation divided by the mean

which is of the order of 1/N j0, that is,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(Dj)2i

q
hDji � 1

Nj0
: ð11:9Þ

For arbitrary initial values of j0 this quotient is a

small number. However, in epidemics during the

initial phase j0 is of the order of 1/N which implies
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a variability of order unity. It is important to note

that j¼ 0 is an absorbing boundary of the system

because if at some point no infecteds are present

no epidemic outbreak can occur. Consequently,

whether or not an outbreak occurs is a matter of

chance. Since any arbitrarily small initial condition

j0> 0 in the deterministic SIR model implies an

exponential increase of j(t), it is clear that Eqns (11.3)

are of no use in modelling the typical scenario one

is confronted with during the initial phase of an

epidemic. In the next section we exemplify this

reasoning in a system of two coupled populations.

11.4 Interacting populations

Consider the system of two confined populations

which exchange individuals as depicted in Fig. 11.3.

In each population the dynamics of an epidemic

is governed by the simple reaction scheme (11.4).

For simplicity we assume that both populations

have the same size, that is, NA¼NB¼N. In addi-

tion to disease transmission and recovery, indi-

viduals may traverse from one population to the

other at a transition rate g. Schematically, the entire

dynamics is given by

SA þ IA !a 2IA, IA !b ;,

SB þ IB !a 2IB, IB !b ;
IA !g IB IB !g IA, SA !g SB, SB !g SA,

ð11:10Þ

where the indices label the two distinct popula-

tions. The state of the system is given by the prob-

ability p(S1, I1, S2, I2; t) of finding a combination of

susceptibles and infecteds in both populations.

Along the same lines as presented in the previous

section one can construct a master equation for this

probability, investigate the limit of large N, and

obtain a Fokker–Planck equation in the diffusion

limit. Now assume that initially a small number of

infected I0 is introduced to population A without

any infecteds contained in B. For a sufficiently high

number of infecteds in A an epidemic occurs. For

g> 0 infecteds are introduced to B and a subsequent

outbreak may occur in B after a time lag T. Without

noise, that is, in the idealized case of N!1 and thus

the deterministic SIR-model, any arbitrarily small I0

triggers two successive outbreaks. This is quite

different when quantized populations and thus

fluctuations are taken into account.

Figure 11.3 depicts the results of simulations

for two populations with N¼ 10,000 and R0¼ 4.

Various realizations of the time course IA(t) and
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Figure 11.3 Two confined populations with exchange of individuals. In

each population the dynamics is governed by the SIR-reaction scheme.

Individuals transit from one population to the other at a rate g.

Parameters are NA¼NB¼ 10,000, R0 ¼ 4 and an initial number of

infecteds I0¼ 20 in population A Left: The probability p(g) of an outbreak

occurring in population B as a function of transition rate g. The insets

depict histograms of the time lag T between the outbreaks in A and B for

those realization for which an outbreak occurs in B. The circles are results

of the simulations of 100,000 realizations, the solid curve is the analytic

result of Eqn (11.11) Right: The left black curve represents the time course

of IA(t) of the number if infecteds in population A. The shading reflects the

variability of an ensemble of over 100,000 realizations of the process.

The trajectories on the right correspond to IB(t). Two representative

realizations are superimposed in black.
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IB(t) of the epidemic in both populations were

computed. The initial number of infecteds in

population A was IA (t¼ 0)¼ I0¼ 20. The left panel

depicts the probability p(g) that the outbreak is

followed by an outbreak in population B as a

function of the transition rate g. For large enough

rates the probability is nearly unity, since a suffi-

cient number of infecteds is introduced to B. For

very low rates g no infecteds are introduced to B

during the time span of the epidemic in A and thus

p(g)! 0 as g! 0. For intermediate values of g the

probability p(g) is somewhere in the range [0,1].

This means that in this regime one cannot say with

certainty whether an epidemic in A is followed by

an epidemic in B. This effect is caused by the

fluctuations of the system. The function p(g) is

given by

p(g) ¼ 1 � expð�g=g�Þ, ð11:11Þ

where

g� � R0 þ 1

R0 � 1

� �
1

2Imax
, ð11:12Þ

is a critical rate which is determined by the para-

meters N and R0 of the system and the maximum

of infecteds Imax in A. The insets depict histograms

of the time lag t for those realization in which an

outbreak occurs in B. Each histogram corresponds

to a different transition rate g. The smaller g the

higher the variability in T. Note that even in a

range in which p(g)� 1 (the right-most of the three

insets), the time lag T is still a stochastic quantity

with a high degree of variance.

The right panel depicts the infection curves IA(t)

and IB(t) in both populations. Since jA (t¼ 0)� 1/N

in A, the various realizations of IA (t) nearly coin-

cide. As expected, the impact of fluctuations is

small in population A. This is quite different in

population B which exhibits a high variability in

the time course of IB (t). Since initially no infecteds

are present in this population, the outbreak relies

on the immigration of infected from A. Thus, dur-

ing the initial phase jB (t) is of the order of 1/N, the

regime in which fluctuations are important. Note,

however, that once jB (t)� 1/N the shape of

infection curve is relatively uniform and similar to

the one predicted by the deterministic model.

Consequently, the introduction of stochastic

exchange of infected individuals leads to a lack of

predictability in the time of onset of the initially

uninfected population. In summary, the investiga-

tion of two coupled populations shows that the

deterministic SIR-model fails whenever only one

population initially contains infected individuals

and a full probabilistic description is required.

11.5 Epidemics on networks

The system of two populations can be generalized

to an arbitrary number M of populations in a

straightforward manner. For simplicity, we

assume that the epidemiological parameters a and

b and hence the reproduction number R0 are

identical in all populations. In addition to the

transmission and recovery dynamics

Si þ Ii !
a

2Ii, Ii !
b ;, i ¼ 1, . . . , M, ð11:13Þ

dispersal of individuals is defined by a matrix gij of

transition rates between populations

Si !
gij

Sj Ii !
gij

Ij, i, j ¼ 1, . . . , N, ð11:14Þ

where gii¼ 0. Let us assume that the total number

of individuals N ¼
PM

i N i is fixed. For a pre-

defined matrix gij the relative concentration of

individuals ci ¼ Ni=N changes over time. The

dynamics of ci (t) can be interpreted as the prob-

ability of finding an individual in population i.

This quantity is determined by the master equation

for dispersal, that is,

qtci ¼
X

j

ðgijcj � gijciÞ: ð11:15Þ

The stationary state c�i i ¼ 1, . . . , M is given by

gij

gji

¼ c�i
c�j

¼ N�
i

N�
j

: ð11:16Þ

In a realistic system, it is reasonable to assume

stationarity of dispersal, that is, Ni(t) � N�
i and that

the exchange rates between populations fulfill

(11.16). Generally, for populations of identical size

(i.e. Ni¼N) the above condition implies that gij¼ gji

of every pair (i, j) of populations. Note that this
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does not imply that all rates are identical, for

example, one might have g12¼ g21 and g34¼ g43

but g12 6¼g34.

Consider a system as depicted in Fig. 11.4. Each

population contains N individuals. A central

population A is coupled to a set of M� 1 sur-

rounding populations B1, . . . BM� 1. The exchange

rates between the central (i¼ 0) and a surrounding

population j are the same, that is, g0j¼ gj0¼ gj with

j¼ 1, . . . , M� 1. However, the set of rates gj can be

highly variable.

Assume that initially a number of infecteds I0 is

introduced to the central population A such that an

outbreak occurs. Furthermore we assume that

there are initially no infecteds in the surrounding

populations. The entire set of rates {gj}j¼ 1, . . . , M� 1

determines the behaviour in the surrounding

populations. If all rates gj are identical and very

small we expect no infection to occur in the Bj, for

large enough gj an outbreak will occur in every Bj.

In a realistic network, however, transition rates are

distributed on many scales and the response of

the network to a central outbreak depends on

the statistical properties of this distribution. We

denote the probability density of rates by p(g).
In order to quantify the reaction of the network

we introduce for each surrounding population a

binary number xj with j¼ 1, . . . , M� 1 which is

unity if an outbreak occurs in Bj and zero if it does

not. The variability of the entire network is quan-

tified be the cumulative variance per population

and we define

s � 4

M � 1

X
i

varðxiÞ

¼
Z

dðgÞdðgÞ ð1 � pðgÞÞpðgÞ ð11:17Þ

as a measure for the uncertainty of the network

response where p(g) is the probability of outbreak

as defined by (11.12). If, for example, all trans-

ition rates are identical and equal to �gg (i.e.

p(g) ¼ d(g� �gg)) one obtains

s(�gg) ¼ 4p(�gg)(1 � p(�gg)) ð11:18Þ

which is unity for p(�gg) ¼ 1
2. Comparing with

Eqn (11.11) we see that the system with identical

transition rates gi ¼ �gg exhibits the highest degree of

unpredictability when the rates are of the order of

the critical rate g�. The function s(�gg) is shown in

Fig. 11.4. The assumption of identical transition

rates gi is never met in real networks of popula-

tions. Typically, the transition rates vary con-

siderably between various nodes in a network.

Consider for instance the aviation network

(Fig. 11.1) where the transport rates vary over

many orders of magnitude. The inset depicts a

histogram of the flux of individuals from the set of

nodes. This indicates that transition rates are dis-

tributed on many scales. A high degree of vari-

ability in the rates can be accounted for by

a probability density

pðgÞ ¼ 1

logðgmax=gminÞ
1

g
gmax � g� gmin; ð11:19Þ

where the interval [gmin, gmax] incorporates many

orders of magnitude. Inserting into Eqn (11.17)

gM-1g5
g4

g3 g2

g1

10–2 100 102

g/g*

0.0
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1.0

s (g)
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Figure 11.4 Inhomogeneous connections and predictability. Left: A

star-like network with a central population A connected to M� 1

populations B1, . . . , BM� 1 with rates g1, . . . , gM� 1. Right: The

cumulated variance (Eqn 11.9) for a star network with 32 populations is

depicted as a function of the average transmission rate �gg. Two cases are

exemplified: equal rates (circles) and distributed rates according to

Eqn (11.19) with gmax/gmin�1000 (squares). The solid and dashed lines

shows the analytical results given by Eqns (11.17) and (11.111),

respectively. Parameters are N¼ 10,000 for all populations, R0¼ 4 and

an initial number of infecteds I0¼ 20 in population A. The numerical

values are obtained by calculating the variance of the fluctuations of

100 different realizations of the epidemic outbreak for each �gg

D Y N A M I C S O F M O D E R N E P I D E M I C S 87



yields s(�gg) for strongly distributed rates. In Fig. 11.4

this function is compared to a system of identical

transition rates. Clearly, a high variability in rates

drastically changes the degree of predictability. On

one hand, for intermediate values of g� g* the

predictability is much higher than in the system of

identical rates. This is a rather counterintuitive

result. Despite the additional randomness in trans-

ition rates, the degree of determinism is increased.

On the other hand, for large values of the average

rate �gg predictability is decreased. We conclude that

in order to make a reliable prediction on the epi-

demic spread on a network, one needs an estimate

of the distribution of transition rates, that is, the

function p(g) and its relation to the critical rate g*
as determined Eqn (11.12).

11.6 The global spread of SARS—a
paradigm

The theoretical investigation presented above lead

us to investigate the extent to which a worldwide

epidemic can be predicted when the local infection

parameters such as the reproduction number R0 as

well as the global dispersal parameters are known.

A paradigmatic system is the recent worldwide

spread of the Severe Acute Respiratory Syndrome

(SARS). Figure 11.2 depicts the geographical repres-

entation of the global spreading of probable SARS

cases on 30 May 2003 as reported by the World

Health Organization (WHO) and Centers for Dis-

ease Control and Prevention (CDC). The first cases

of SARS emerged in mid November 2002 in

Guangdong Province, China (Centers for Desease

Control and Prevention 2003). The disease was

then carried to Hong Kong on 21 February 2003

and began spreading around the world along

international air travel routes, as tourists and the

medical doctors who treated the early cases trav-

elled internationally. As the disease moved out of

southern China, the first hot zones of SARS were

Hong Kong, Singapore, Hanoi (Vietnam), and

Toronto (Canada), but soon cases in Taiwan,

Thailand, the United States, Europe, and elsewhere

were reported.

In order to understand the global spread we

combined local infection dynamics appropriate

for SARS with the stochastic dispersal of

individuals on the civil aviation network as

depicted in Fig. 11.1.

11.6.1 Local infection dynamics

For the local infection dynamics we chose an

extension of the stochastic SIR model similar to

Eqn (11.5). The categories S, I, and R are completed

by a category L of latent individuals which have

been infected but are not infectious yet themselves,

accounting for the latency of the disease. In our

simulations individuals remain in the latent or

infectious stage for periods drawn from a delay

distribution (Donnelly et al. 2003; Riley et al. 2003).

In order to simulate the worldwide spreading of

SARS we need to specify the basic reproduction

number R0 and the mean duration of the infectious

period t¼ b� 1 of the infection dynamics. For SARS,

the distribution of infectious times has been invest-

igated in detail using the case data of the outbreak

in Hong Kong (Donnelly et al. 2003) The basic

reproduction number and how it changed over time

is also known (Lipsitch et al. 2003; Riley et al. 2003).

11.6.2 The aviation network

We collected data which incorporates 95% of the

entire civil aviation traffic (IATA 2003). The data

comprise flights among the 500 largest international

airports in over 100 different countries (AOG 2003).

The network considered is depicted in Fig. 11.1.

For each pair (i, j) of airports, we checked all flights

departing from airport j and arriving at airport i.

The amount of passengers carried by a specific

flight within one week can be estimated by the size

of the aircraft (We used manufacturer capacity

information on over 150 different aircraft types)

multiplied by the number of days the flight operates

in one week. The sum of all flights yields the pas-

sengers Mij per week between i and j. The matrix Mij

defines the dispersal of individuals on the aviation

network. As indicated by the grey code in Fig. 11.1

the matrix elements vary on a number of scales. We

computed the total passenger capacity Tj ¼
P

i Mij

of each airport j per week assuming that flights

carry 80% of their capacity and found very good

agreement with independently obtained airport

capacities.
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11.6.3 Modeling dispersal

If we assume that the passenger capacity Tj reflects

the need of a catchment area j, this quantity is

proportional to the population size Nj at j,

Nj / Tj: ð11:20Þ

Under this assumption the probability wij that a

travelling individual at j is making a transition to i

is given by

wij /
Mij

SkMkj
: ð11:21Þ

Stochastic dispersal of individuals is then governed

by the master equation

qtPi ¼ g
X

j

wijPj � gPi, ð11:22Þ

where g is a universal dispersal rate constant

which sets the timescale of travelling. The para-

meter g can be determined experimentally by

measuring the flux of individuals between two

arbitrary airports of the network knowing the

population sizes of the corresponding catchment

areas. The first term in the master equation

accounts for the influx of individuals to location i

from all other locations j, the second reflects the

outflux of individuals from i. In (11.22) the quant-

ity Pi represents any labelled set of individuals.

Under the assumption that infecteds Ii and sus-

ceptibles Si exhibit identical dispersal properties,

Eqn (11.22) holds for both. We estimated the rate g
by computing the ratio of the number of infected

individuals in Hong Kong to the number of

infected individuals outside Hong Kong, which is

provided by the WHO data.

11.6.4 Results

Figure 11.5(a) depicts a geographical representa-

tion of the results of our simulations. Initially, an

infected individual was placed in Hong Kong. The

basic reproduction number was set to R0¼ 4.0 for

the first 35 days and subsequently to zero. In a

second simulation we chose a time course for

R0¼ 4.0 for a period of 0–35 days, R0 ¼ 1.0 for

days 35–55 and R0¼ 0.0 for days 55–1. Both

simulations lead to similar results. The figure

shows the prediction of our model for the spread

of SARS 90 days after the initial infection, corres-

ponding to the end of May. We find the results of

our simulations to be in remarkable agreement

with the worldwide spreading of SARS as reported

by the WHO (compare Fig. 11.2): There is an

almost one-to-one correspondence between infec-

ted countries as predicted by the simulations and

the WHO data. Also the numbers of infected

individuals in a country agree nicely. This agree-

ment with the reported case seems rather sur-

prising considering that the simulations reflect

stochastic single realizations of a stochastic process

on a highly coupled network. However, as we

have shown in the simple and idealized case

investigated in Section 11.5 the high degree of

heterogeneity may well increase the predictability

and degree of determinism in the system. This is

the underlying reason why a forecast of the global

spread of an epidemic on the aviation network is

indeed feasible.

Figures 11.5(b) and (c) exemplify how our model

can be employed to predict endangered regions if

the origin of a future epidemic is located quickly.

The figures depict simulations of the global spread

of SARS 90 days after hypothetical outbreaks in

New York and London, respectively. Despite the

worldwide spread of the epidemic in each case, the

degree of infection of each country differs con-

siderably, which has important consequences for

control strategies.

11.7 Control strategies

Vaccination of a fraction of the population reduces

the fraction of susceptibles and thus yields a

smaller effective reproduction number R0. If a

sufficiently large fraction of the population is

vaccinated, R0 drops below 1 and the epidemic

becomes extinct. The global aviation network

can be employed to estimate the fraction of the

global population that needs to be vaccinated in

order to prevent the epidemic from spreading.

Figure 11.6 demonstrates that a quick response to

an initial outbreak is necessary if global vaccina-

tion is to be avoided. The figure depicts the

probability pn (u) of having to vaccinate a fraction u
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(a)

(b)

(c)

Figure 11.5 Geographical representation of the results of our simulations 90 days after an initial infection in (A) Hong Kong, (B) New York, and

(C) London. The same gray code was used as in Fig. 11.2. The simulation in A corresponds to the real SARS infection at the end of May and should be

compared to the WHO data shown in Fig. 11.2. Here the worldwide spreading is based on an outbreak starting in Hong Kong in mid February 2003.
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of the population if an infected individual is

randomly placed in one of the cities and permitted

to travel n¼ 1, 2 or 3 times. For the majority of

originating cities the initial spread is regionally

confined and thus a quick response to an outbreak

requires only a vaccination of a small fraction of

the population. However, if the infected individual

travels twice, the expected fraction hui of the

population which needs to be vaccinated is con-

siderable (74.58%). For n¼ 3 global vaccination is

necessary.

As a reaction to a new epidemic outbreak, it

might be advantageous to impose travel restric-

tions to inhibit the spread. Here we compare

two strategies: (1) the shutdown of individual

connections and (2) the isolations of cities. Our

simulations show that an isolation of only 2% of

the largest cities already drastically reduces hui
(with n¼ 2) from 74.58% to 37.50% (compare the

light-gray and dark grey curves in Figure 11.6).

In contrast, a shutdown of the strongest connec-

tions in the network is not nearly as effective.

In order to obtain a similar reduction of hui
the top 27.5% of connections would need to be

taken off the network. Thus, our analysis shows

that a remarkable success is guaranteed if the

largest cities are isolated as a response to an out-

break.

In a globalized world with millions of passen-

gers travelling around the world week by week

infectious diseases may spread rapidly around

the world. We believe that a detailed analysis of

the aviation network represents a cornerstone

for the development of efficient quarantine strat-

egies to prevent diseases from spreading. As our

model is based on a microscopic description of

travelling individuals our approach may be con-

sidered a reference point for the development

and simulation of control strategies for future

epidemics.
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Figure 11.6 Impact and control of epidemics. Left: The probability pn(u)

of having to vaccinate a fraction v of the population in order to

prevent the epidemic from spreading, if an initial infected individual is

permitted to travel n¼ 1 (///), 2 (gray), and 3 (\\\) times. The

probability pn(u) is estimated by placing the infected individual on a

node i (black dot) of the network. The fraction un associated with

node i is given by the number of susceptibles in the subnetwork

defined by the nodes which can be reached by the infected individual

after n¼ 1, 2, and 3 steps. Histogramming ui for all nodes i yields

an estimate for pn(u). Right: The quantity p2(u) exhibits a strong shift

to lower values of u when only 2% of the largest cities are isolated

after an initial outbreak (light grey) as compared to p2(u) when no

isolation occurs (dark grey).
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