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Abstract

We consider different generalizations of the Fokker–Planck equation (FPE) devised to describe L�eevy processes in

potential force fields. We show that such generalizations can proceed along different lines. On one hand, L�eevy statistics
can emerge from the fractal temporal nature of the underlying process, i.e., a high variability in the rate of microscopic

events. On the other hand, they may be a direct consequence of the scale-free spatial structure on which the process

evolves. Although both forms considered lead to Boltzmann equilibrium, the relaxation patterns are quite different. As

an example, generalized diffusion in a double-well potential is considered.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Random walk processes leading to anomalous

diffusion are adequate for describing various
physical situations. The continuous time random

walk (CTRW) model of Scher and Montroll [1] for

instance, leading to strongly subdiffusive behavior,

was a milestone in understanding photoconduc-

tivity in strongly disordered and glassy semicon-

ductors. Due to its simplicity, this model was

recently employed to investigate aging phenomena

typical for glasses and related complex systems [2–
5]. On the other hand, L�eevy-flight models [6],

leading to superdiffusion, are adequate for the de-

scription of phenomena ranging from transport in

heterogeneous catalysis [7], self-diffusion in micelle

systems [8], reactions and transport in polymer

systems under conformational motion [9], trans-

port processes in heterogeneous rocks [10] and the

behavior of dynamical systems [11] to flight paths
of albatrosses [12] and even human eye-movements

[13]. Closely related models appear in the descrip-

tion of economic time series [14]. L�eevy-related
statistics were observed in hydrodynamic transport

[15], and in the motion of gold nanoclusters on

graphite [16]. In addition, mixed models were

proposed in which slow temporal evolution (de-

scribed by Scher–Montroll CTRW) is combined
with the possibility of L�eevy-jumps, so that in gen-

eral both sub- or superdiffusive behavior can arise

[17,18]. Similarily, processes often referred to as

L�eevy-walks are based on long-tailed jumps in

combinations with a time cost to perform them, see

for example [6,19]. L�eevy-walks were introduced in

[20] to explain accelerated diffusion in Josephson

junctions and related chaotic systems [21].

Chemical Physics 284 (2002) 409–421

www.elsevier.com/locate/chemphys

*Corresponding author.

E-mail address: igor.sokolov@physik.hu-berlin.de (I.M.

Sokolov).

0301-0104/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0301-0104 (02 )00671-7

mail to: igor.sokolov@physik.hu-berlin.de


Typically, the corresponding processes are de-

scribed on a stochastic level, such that the incor-

poration of boundary conditions, time or position

dependent forces leads to considerable mathe-

matical difficulties.

Concerning ordinary diffusion and transport in
a stochastic system, the Fokker–Planck equation

(FPE) is an adequate instrument for solving

boundary value or time-dependent problems [22].

The FPE is an equation for the probability density

function (pdf) pðx; tÞ of the particle’s position at

time t and reads

opðx; tÞ
ot

¼ LFPp

¼ �r lf ðx; tÞpðx; tÞð Þ þ jDpðx; tÞ: ð1Þ

Here LFP denotes the Fokker–Planck operator, l
and j are the mobility and the diffusion coefficient

(assumed to be constant) and f ðx; tÞ is the external
force acting on the particle. Note that since the
mobility and the diffusion coefficient are connected

via the Einstein relation, j ¼ kTl � l=b, the

equation effectively contains only one free pa-

rameter. Alternatively, Eq. (1) may be recast into a

different form in the case of a potential force

f ðx; tÞ ¼ �rUðx; tÞ

opðx; tÞ
ot

¼ j e�bU=2 o

ox

� �2

ebU=2p

"

� pebU=2 o

ox

� �2

e�bU=2

#
; ð2Þ

the equivalence of which to Eq. (1) is easily

checked by expanding the differentiations. Obvi-

ously, the stationary solution of the FPE (if it
exists) is the Boltzmann distribution, pðxÞ / exp

ð�bUÞ. Inserting this form into Eq. (2) one readily

infers that the two terms entering with opposite

signs are equal and cancel.

In order to investigate analogous systems in-

corporating anomalous diffusion, various gener-

alizations of the FPE were proposed. Concerning

subdiffusion, the appropriate generalizations can
be obtained from CTRW models, for a general

survey see [27], as well as from an approach based

on fractional master equations [28]. Concerning

superdiffusion (L�eevy flights), such generalizations

typically involve changing from a gradient and

Laplacian to the corresponding fractional deriva-

tive. For example, a pure L�eevy-flight can be de-

scribed by means of the fractional diffusion

equation [23–25]

opðx; tÞ
ot

¼ jaD
a=2pðx; tÞ; ð3Þ

where Da=2 is a fractional Laplacian, a linear op-

erator, whose action on a function f ðxÞ in Fourier

space is described by Da=2f ðxÞ ¼ �ðk2Þa=2f ðkÞ ¼
�jkjaf ðkÞ. The coordinate representation of this

operator is discussed in Appendix A. The solution
of Eq. (3) in Fourier space reads

Gðk; tÞ ¼ expð�jjkjatÞ; ð4Þ
which in coordinate space corresponds to a sym-

metric L�eevy stable distribution

Gðx; tÞ ¼ 1

ðjtÞ1=a
L

x

ðjtÞ1=a
; a; 0

 !
ð5Þ

(we use here the canonical notation, see [26]). On

the other hand, there is no generic way to gen-

eralize the Fokker–Planck operator containing an

external force term: for example, the drift term
may stay unchanged, may correspond to a sym-

metric or asymmetric fractional derivative, or the

whole Fokker–Planck operator may be raised to

the power of a=2. All corresponding equations

have their physical meaning and applications. The

properties of their solutions differ considerably.

Moreover, as we proceed to show, other gener-

alizations are also possible. The situation here is
to some extent similar to one in fractal geometry:

What is the generalization of the Euclidean di-

mension to the fractal case? Depending on the

system and on the property of interest it could be

the fractal dimension, the spectral dimension, or

even a spectrum of different dimensions. In what

follows we discuss the properties of some gener-

alization of the FPE to the superdiffusive case
leading to L�eevy flights in the force-free limit. We

will focus on two complementary situations,

namely one in which superdiffusion stems from

fractal temporal properties of the underlying mi-

croscopic dynamics and another in which the

spatial structure is responsible for enhanced dif-

fusion. We mostly concentrate on the generaliza-
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tions of the forms, Eqs. (1) and (2) which lead to

a Boltzmann distribution in equilibrium. We dis-

cuss the physical implications of the correspond-

ing equations and some properties of their

solutions. As a physically most interesting appli-
cation, a fractional generalization of a Kramers

problem in a double-well potential is considered.

Let us first turn to the situations which can be

considered as stemming from the fractal temporal

behavior.

2. L�eevy processes as stemming from subordination

An important property of symmetric L�eevy
processes is the fact that they are subordinated to

ordinary Brownian motion: the corresponding pdf

can be represented in the form:

pðx; tÞ ¼ 1

t1=a
L

x
t1=a

; a; 0
� �

¼
Z 1

0

1ffiffiffiffiffiffiffiffi
2ps

p exp

�
� x2

2s

�
1

t2=a
L

s
t2=a

;
a
2
; 1

� �
ds;

ð6Þ

where Lðx; a=2; 1Þ is an extreme (one-sided) L�eevy
distribution of index a=2 [26].

The variable s is called the operational time of
the process. The interpretation of Eq. (6) is that

L�eevy flights can be considered as stemming from a

highly irregular sampling trajectories generated by

simple diffusion (random walk). This type of

temporal behavior plays a very important role in

many situations encountered in physics, such as an

equilibrium phase transitions [29]. For a review see

[30] and references therein.
Here, the trajectory of diffusion (a random walk

in a discrete case or a Wiener path in a continuous

situation) is parameterized by the operational time

s (say, the number of steps of the random walk),

which itself is a random function of the (physical)

time. The random process sðtÞ is a process with

positive increments, and the distribution of sðtÞ is
given by a one-sided L�eevy law. Thus, the increase
Ds of the operational time per physical time unit is
given by a one-sided L�eevy-distribution, pðDsÞ ¼
L Ds; a=2; 1ð Þ having a power-law tail, pðDsÞ /
s�1�a=2.

The corresponding situation is depicted in

Fig. 1. Here a L�eevy-flight of N ¼ 100 steps is

generated as follows. One generates a sequence

fnigði ¼ 1; 2; . . . ;NÞ of the numbers of steps

between the observation instants and plots a re-

alization of a simple random walk of M ¼
PN

i¼1 ni
steps. The turning points of a L�eevy-flight are then
the positions of a random walker after mk steps,

mk ¼
Pk

i¼1 ni. Fig. 1 corresponds to a process

subordinated to a random walk under the opera-

tional time given by

pðniÞ ¼
1ffiffiffi

p
p

n3=2i

exp

�
� 1

2ni

�
: ð7Þ

The overall pdf of the process pðx; tÞ is then given

approximately by a Cauchy distribution

Fig. 1. The mechanism of subordination: L�eevy flights can be

considered as stemming from a (highly inhomogeneous) ran-

dom sampling of a simple random walk.

D. Brockmann, I.M. Sokolov / Chemical Physics 284 (2002) 409–421 411



pðx; tÞ ¼
X1
n¼0

1ffiffiffiffiffiffiffiffi
2pn

p exp

�
� x2

2n

�
� tffiffiffi

p
p

n3=2
exp

�
� t2

2n

�
’
Z 1

0

1ffiffiffiffiffiffiffiffi
2pn

p exp

�
� x2

2n

�
� tffiffiffi

p
p

n3=2
exp

�
� t2

2n

�
dn

¼ t
pðt2 þ x2Þ : ð8Þ

Although this continuous approximation is

valid here, some care must be taken in the general

case when sums over steps in random walks are

replaced by integral, see for example [31]. Apply-

ing the subordination procedure to the general,

biased diffusive process, one is lead to the gener-

alization of the FPE, in which the entire Fokker–
Planck operator is raised to the power a=2:

op
ot

¼ �ð �LFPÞa=2p ð9Þ

as shown in [32]. The generalized Fokker–Planck
operator La ¼ � �LFPð Þa=2 commutes with LFP

and shares with it the same set of the eigenfunc-

tions /i. The corresponding eigenvalues Ki of the

operator La are connected with those of LFP via

Ki ¼ �ð�kiÞa=2. Since the eigenvalues ki ofLFP are

real and nonpositive, this is true for the Ki as well.

Eq. (9) follows from the subordination procedure

just in the same way as a Cauchy distribution
followed from a Gaussian distribution in the ex-

ample given above. Let us consider a spectral

representation of the solution of the FPE

gðx; sÞ ¼
X
i

/iðxÞe�jki js: ð10Þ

The subordination procedure applied to this so-

lution leads to

pðx; tÞ ¼
Z

gðx; sÞ 1

t2=a
L

s
t2=a

;
a
2
; 1

� �
ds

¼
X
i

/iðxÞ
Z

e�jki jsL
s
t2=a

;
a
2
; 1

� �
ds

�
X
i

/iðxÞe�jkijat ð11Þ

due to a well-known property of the Laplace-

transforms of one-sided L�eevy distributions [26].

Note that the eigenfunction /0 corresponding to a

zero eigenvalue (if any) is a stationary distribution,

which is the same (i.e., a Boltzmann distribution)
for the normal and for the generalized process.

The spectral decomposition of solutions of Eq. (9)

given by Eq. (11) is incorporated in our numerical

procedure for the solution of superdiffusive FPE in

a potential field considered in Section 4.

Eq. (9) can also be interpreted within the

Langevin scheme, which clarifies the circumstances

under which Boltzmann statistics may or may not
appear when superdiffusive generalizations of the

FPEs are introduced. Let us first consider a purely

diffusive situation without external force. In the

continuous limit (corresponding to averaging over

the time periods which are short enough to con-

sider all parameters constant but during which

many steps of a random walk are performed), the

system’s development in its operational time is
given by a Langevin equation

d

ds
xðsÞ ¼

ffiffiffiffiffiffi
2j

p
nðsÞ; ð12Þ

where nðsÞ is a d-correlated Gaussian noise with
zero mean and with unit dispersion. Subordination

requires that

ds
dt

¼ kðtÞ; ð13Þ

where kðtÞ is a one-sided L�eevy process of index

a=2. The resulting process is thus described by a

Langevin equation

dx
dt

¼ ds
dt

d

ds
xðsÞ ¼

ffiffiffiffiffiffi
2j

p
kðtÞnðsðtÞÞ; ð14Þ

where sðtÞ is a monotonously increasing random

function which is changing slowly on the scale on

which nðsÞ is correlated. This suggests that the

random process nðsðtÞÞ is a Gaussian one, has zero
mean and dispersion

hnðsðtÞÞnðsðt0ÞÞi ¼ dðsðtÞ � sðt0ÞÞ

¼ ðds=dtÞ�1dðt � t0Þ

¼ kðtÞ�1dðt � t0Þ;

indicating that the process xðtÞ can be formally

represented by a Langevin equation
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_xxðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jkðtÞ

p
gðtÞ; ð15Þ

where gðtÞ is a d-correlated Gaussian noise with

zero mean and unit dispersion. From this equa-
tion, a FPE of the type of Eq. (3) follows along the

usual lines.

Physically, such strongly inhomogeneous be-

havior can be attributed to random fluctuations of

the mobility or of the temperature or of the both:

jðtÞ ¼ jkðtÞ ¼ klðtÞT ðtÞ. Let us return to the full

process described by a Langevin equation

_xxðtÞ ¼ lf þ
ffiffiffiffiffiffiffiffiffiffiffi
2lkT

p
nðtÞ ð16Þ

with a potential force f ðx; tÞ ¼ �rUðx; tÞ. Here
the situations corresponding to the fluctuations in

temperature and to ones in mobility differ vastly.

Keeping the temperature constant and letting l
fluctuate leads to a process subordinated to a bi-

ased random walk, which is described by a
Langevin equation

_xxðtÞ ¼ lðtÞf þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lðtÞkT

p
nðtÞ; ð17Þ

where lðtÞ is now a strongly fluctuating random

function, whose distribution is given by a one-si-

ded L�eevy law. The corresponding pdf is governed

exactly by a fractional FPE, Eq. (9) derived above.
This equation shows a relaxation to a normal

Boltzmann distribution, which is not surprising

since the corresponding scheme describes a system

showing detailed balance at given, fixed tempera-

ture T. Note that although the equilibrium prop-

erties of the system are usual, its relaxation

properties are not, see [33] for a detailed discus-

sion. Thus, it does not exhibit linear response to a
constant external field, and, moreover, since the

corresponding pdf neither possesses the second

moment nor scales, no reasonable generalization

of the Einstein’s relation exists. The same is valid

for the model of topological superdiffusion dis-

cussed below. On the other hand, as we proceed to

show, the behavior of both models in confining

potentials such as a harmonic or a double-well
one, is not as exotic (vide infra).

The situation under fluctuating temperature is

vastly different: a system with fluctuating temper-

ature must not show Boltzmann statistics at

equilibrium (if any). Let us mention that under

certain circumstances the distributions given by

Langevin equations with fluctuating parameters

approach ones given by Tsallis statistics [34], i.e.,

ones stemming from a thermodynamic construct in

which the entropy is nonextensive and thus the

concept of temperature can not be introduced in a

usual way.
In our case, fluctuations in temperature do not

affect the first term, i.e., the deterministic motion

and lead (after performing usual steps) to a frac-

tional Fokker–Planck equation (FFPE) in the

form:

op
ot

¼ � o

ox
lfpð Þ þ jDa=2p; ð18Þ

whose solutions are discussed in [35].

3. Topologically induced superdiffusion

Complementary to the situation discussed in the

previous section in which superdiffusion originates

from fractal temporal behavior, we will discuss the

fractional generalization of the FPE adequate for

the description of diffusion on scale-free structures.

Contrary to the situation investigated in the pre-

vious section in which superdiffusion is caused by a
fractal sampling of an otherwise continuous path,

we will focus on the limiting behavior of a master

equation describing a Markovian jump process in

which transitions are caused by thermal hopping

between energetically different states on a topo-

logically complex structure [9].

As a model system, we consider a heteropolymer

in solution depicted in Fig. 2. We focus on the
dynamics of a test particle performing thermally

activated motion along the linear chemical coor-

dinate axis x of the polymer. If the polymer is fixed

at full extend, thermal activation causes the particle

to hop at a rate 1=sD from a given site to a neigh-

boring site with a probability determined by the

energy difference within a given mononer pair.

However, a polymer in solution is subjected to
thermal conformational changes occurring on a

time scale sG. The conformational changes allow

sites which are far apart along the chemical se-

quence to come close in Euclidian space, as indi-

cated in Fig. 2: for simplicity, a Gaussian chain

(corresponding to a Rouse dynamics) can be con-
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sidered, moreover, the conformational changes will

be taken fast enough on the scale sD. In this case

the particle may jump from a given site x to a site y

far apart with a rate proportional to the probability
that the sites x and y have come close in the given

time interval. In our case, the probability of such

event is proportional to jx� yj�3=2. As we proceed
to show, the fractional generalization of the FPE

corresponding to the situation depicted above dif-

fers from the ones considered so far.

The system introduced above can be modeled

by a Markovian jump process governed by a
temporally homogeneous master equation

opðx; tÞ
ot

¼
Z

dy wðxjyÞpðy; tÞ½ � wðyjxÞpðx; tÞ� ð19Þ

in which the rates wðxjyÞ are determined by the

short time behavior of the conditional probability

to make a transition y ! x

wðxjyÞ � lim
Dt!0

1

Dt
pðx; t þ Dtjy; tÞ: ð20Þ

Let us mention here, that in Eq. (20) the rates

wðxjyÞ may be singular and may even defy

normalizability. The Cauchy process for example

is defined by wðxjyÞ ¼ 1=pðx� yÞ�2. If, on the

other hand,
R
dxwðxjyÞ ¼ constant exists, the

constant can be factored out and absorbed by a
rescaling of the time. In this case the process is a

pure jump process, consecutive jumps are seper-

ated by time periods during which the random

process is constant, in contrast to the Cauchy

process whose realizations are discontinuous al-

most everywhere.

In our example the coordinate x represents

the chemical coordinate along the polymer chain.
The reasoning above suggests a rate of the

form

wðxjyÞ ¼ 1

s0
e�b½UðxÞ�UðyÞ�=2f ðx� yÞ: ð21Þ

The right-hand side of Eq. (21) consists of the

thermal component expð�b½UðxÞ � UðyÞ�=2Þ ac-

counting for the fact that transitions between

energetically different states are less likely to

occur if the potential difference UðxÞ � UðyÞ is

high. The second factor, f ðx� yÞ represents the
probability of states with chemical coordinates x

and y to be nearby in Euclidean space, i.e., this

term accounts for the geometrical complexity of

the system. Due to the translational invariance

and symmetry of the system in Euclidean space

this term is symmetric and depends on the dis-

tance jx� yj only. Obviously, a system defined

by a rate (21) fulfills detailed balance, charac-
teristic of systems in thermal equilibrium. Note

also that the stationary solution of Eq. (19) with

the rates given by (21) is the Boltzmann distri-

bution

psðxÞ / e�bUðxÞ: ð22Þ
It is instructive to consider a fully extended poly-

mer of total length L. In this case only nearest

neighbor hopping occurs, i.e.

f ðxÞ ¼ 1

2
dðxð � rÞ þ dðxþ rÞÞ: ð23Þ

In (23) r � L is the spacing between adjacent

monomers. Setting qtðxÞ � ebUðxÞ=2pðx; tÞ and sðxÞ �
e�bUðxÞ=2 the master Eq. (19) reduces to:

Fig. 2. Random walk of a particle on a heterogeneous polymer

subjected to fast conformational changes. The polymer consist

of different types of monomers denoted by the symbols along

the chain (top). Each monomer is associated with an intrinsic

potential UðxÞ. Due to conformational changes, the walker may
jump between two sites nearby in Euclidean space but far apart

along the chemical sequence of the polymer.
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opðx; tÞ
ot

¼ 1

2s0
sðxÞ qtðxf þ rÞ þ qtðx� rÞg

� 1

2s0
qtðxÞ sðxf þ rÞ þ sðx� rÞg

¼ r2

2s0
sðxÞ qtðxþ rÞ þ qtðx� rÞ � 2qtðxÞ

r2

� �
� r2

2s0
qtðxÞ

sðxþ rÞ þ sðx� rÞ � 2sðxÞ
r2

� �
:

ð24Þ

Now letting s0, r ! 0 such that r2=s0 ! 2D we

obtain (U � UðxÞ, p � pðx; tÞ)
op
ot

¼ LGp;

¼ e�bU=2 o

ox

� �2

ebU=2p � pebU=2 o

ox

� �2

e�bU=2;

ð25Þ
i.e., Eq. (2). Therfore, the dynamics of a particle

on a fully extended polymer is governed by ordi-
nary diffusion.

Let us now return to a flexible polymer per-

forming conformational changes. In this case the

geometrical factor in the rate (21), f ðx� yÞ, fol-
lows a power-law [9]. Thence, we investigate the

case of long-tailed transition rates. Let

f ðxÞ ¼ Cljxj�ð1þlÞ
; jxj > e > 0;

0; otherwise

�
ð26Þ

with Cl ¼ Cð1þ lÞ sinðpl=2Þ=p and 0 < l6 2.
Here e is the minimal jump length, which substi-

tutes a fixed jump length r of our previous ex-

ample. Note that we do not require f ðxÞ in (26) to

be normalized to unity. Any prefactor independent

of e occurs in both terms in the master Eq. (19) and

can be absorbed as a time constant. The particular

choice of Cl will become clear below. Inserting

(26) into (21) gives

opðx; tÞ
ot

¼ Cl e�bUðxÞ=2
Z
jx�yj>e

dy
ebUðyÞ=2pðy; tÞ
jx� yj1þl

(

� ebUðxÞ=2pðx; tÞ
Z
jx�yj>e

dy
e�bUðyÞ=2

jx� yj1þl

)
:

ð27Þ

In the limit e ! 0 (27) becomes (for notational

ease we set sðxÞ � e�bUðxÞ=2, qðx; tÞ ¼ pðx; tÞ=sðxÞ)

opðx; tÞ
ot

¼ lim
e!0

Cl sðxÞ
Z
jx�yj>e

dy
qðy; tÞ

jx� yj1þl

(

� qðx; tÞ
Z
jx�yj>e

dy
sðyÞ

jx� yj1þl

)

¼ lim
e!0

Cl sðxÞ
Z
jx�yj>e

dy
qðy; tÞ � qðx; tÞ

jx� yj1þl

(

� qðx; tÞ
Z
jx�yj>e

dy
sðyÞ � sðxÞ
jx� yj1þl

)

¼ Cl sðxÞ
Z

dy
qðy; tÞ � qðx; tÞ

jx� yj1þl

(

� qðx; tÞ
Z

dy
sðyÞ � sðxÞ
jx� yj1þl

)
: ð28Þ

Note, that in the limit the resulting rates wðxjyÞ
are not normalizable. Therefore, as mentioned
earlier, the process is not a pure jump process in

this limit. Implicitly, in the limit carried out

above, not only the minimal step size e but also

the typical waiting time swðyÞ ¼ ð
R
dxwðxjyÞÞ�1 at

position y vanishes, because of the singular na-

ture of the rate wðxjyÞ in this limit. However, the

limit can be carried out since the resultant sin-

gularities cancel and Eq. (28) can be interpreted
consistently.

The integrals appearing in (28) are symmetric

fractional generalizations of the ordinary Lapla-

cian (see Appendix A)

Dl=2f ðxÞ ¼ Cð1þ lÞ sinðpl=2Þ
p

Z
dy

f ðyÞ � f ðxÞ
jx� yj1þl

ð29Þ
and Eq. (28) can be recast into a more concise

form:

op
ot

¼ e�bU=2Dl=2ebU=2p � pebU=2Dl=2e�bU=2

� LG;lp: ð30Þ

Again, the similarity to the underlying master-

equation is obvious. Trivially, detailed balance is

retained in the limit and the Boltzmann distribu-

tion is the stationary state of (30). Note that for

l ¼ 2 we recover system (25), i.e.
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LG;2 ¼ LFP: ð31Þ
However, in the range 0 < l < 2 the operator

LG;l does not portray a situation equivalent to any

of the equations discussed above and does not

correspond to any Langevin equation of the type

dX ¼ F ðX Þdt þ dLlðtÞ ð32Þ
in which the long-tailed influence is incorporated
into the thermal fluctuations by a symmetric L�eevy
stable process LlðtÞ. In [36] the difference between

the fractional FPE corresponding to L�eevy-stable

additive noise and the topological generalization is

investigated in detail.

4. Comparison of systems in a double-well potential

We proceed by showing that the two general-

izations of the FPE leading to Boltzmann statistics

in equilibrium (one based on the fractal time, an-

other on the fractal space approach) differ strongly

in their predictions concerning relaxation in the

same kind of potential. For our comparison we

Fig. 3. Evolution of densities pðx; tÞ in the double-well potential UðxÞ (upper left) at three different times: t ¼ 0:01 (upper right), 0:1

(lower left) and 1:0 (lower right) for b ¼ 5:0 and l ¼ 1 with initial condition pðx; 0Þ ¼ dðxþ 1Þ in relation to the stationary state (thin

solid line). The diffusion process equilibrates quickly within the left potential well and does not pass the barrier for short times. In

contrast, the superdiffusive processes transfer probability even for small times and remain peaked at x ¼ �1 for much longer.
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have chosen a classical Kramers situation, i.e.,

diffusion in a double-well potential. As a generic

double-well we chose

UðxÞ ¼ x4 � 2x2 þ 1 ð33Þ
depicted in the upper left panel of Fig. 3. Initially a

particle is placed at the potential minimum at

x ¼ �1, pðx; 0Þ ¼ dðxþ 1Þ. The solutions pðx; tÞ are
depicted at three different times (t ¼ 0:03; 0:1; 1:0)
in Fig. 3 for a value b ¼ 5:0 and an exponent

l ¼ 1. The fractional diffusion equations were

numerically solved by first mapping them onto the

corresponding hermitian Hamiltonian H and

subsequent spectral decomposition H ¼
P

n knPn

where the kn andPn are eigenvalues and projectors

onto the corresponding eigenspaces. Solutions
pðx; tÞ were then expressed in term of these quan-

tities.

Let us first note that the time scales of the re-

laxation processes for the case of normal diffusion

and for L�eevy-processes differ vastly. The typical

times of the concentration equilibration (being the

inverse of the largest nonzero eigenvalue) are:

sC ¼ 20:36 for the diffusion process (2), sC ¼ 4:51
for the subordination case (l ¼ 1) and sC ¼ 3:93
for the case of long jumps with the same value of

l ¼ 1. A much greater value of sC for the ordinary

diffusion process is not surprising. In a short time it

equilibrates within the left potential well. However,

due to the continuity of its sample paths, the dif-

fusion process accumulates probability in the right

potential well only for long times. In comparison,

the subordination process as well as the process

governed by (30) can pass the potential maximum

at x ¼ 0 even for short times, a direct consequence
of the possibility of initiating a long jump from left

to right. The possibility to transmit probability

through the potential barrier is payed off by a

slower equilibration within the left potential well in

which pðx; tÞ for both, subordination and topo-

logical superdiffusion stay sharply peaked around

x ¼ �1. This cusp-like shape in the left potential

well is reminiscent of the classical Scher–Montroll
picture of CTRW. Despite their qualitative simi-

larities in the overall shape of pðx; tÞ subordination
and topological superdiffusion are quite distinct on

close inspection as shown in Fig. 4.

In order to avoid huge difference in scales, we

plot in Fig. 4 the reduced densities in the left and in

the right potential wells, i.e., the densities which

are normalized to unity on the given subinterval
and for the given time:

pLðx; tÞ ¼
pðx; tÞR 0

�1 dypðy; tÞ
; ð34Þ

pRðx; tÞ ¼
pðx; tÞR1

0
dypðy; tÞ

: ð35Þ

Fig. 4. The shape of pLðx; tÞ (left) and pRðx; tÞ (right) for subordinative and topological superdiffusion at t ¼ 0:1, b ¼ 5:0 and exponent

l ¼ 1. Note the difference in scale on the left and right, respectively. Despite the fact that these processes are identical if U ¼ 0, they

respond quite differently if a potential is imposed.
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Clearly, the shapes differ strongly on both sides of

the potential.

In order to reveal the differences in barrier

penetration it is instructive to consider the time

dependence of the total probability in the right
potential well

QðtÞ ¼
Z 1

0

dxpðx; tÞ ð36Þ

and the rate rðtÞ defined by

rðtÞ ¼ � 1

2

d lnQðtÞ
dt

: ð37Þ

Asymptotically, as t ! 1 the processes investi-

gated here evolve according to

pðx; tÞ � psðxÞ � psðxÞð � p0ðxÞÞek1t; k1 < 0; ð38Þ
where psðxÞ and p0ðxÞ denote the stationary and

initial states of the system, respectively. Therfore,

rðtÞ ! �k1 as t ! 1, the rate approaches the

inverse of the relaxation time constant of the

process. In other words, the function rðtÞ mea-

sures how fast the probability transfer across the

barrier approaches the quasi-equilibrium value.

For the same parameters as in Figs. 3 and 4 the
rate rðtÞ is depicted in Fig. 5. The ordinary dif-

fusion rate is initially zero and increases as soon

as the process equilibrates within the left potential

well. It then levels off to a relatively small con-

stant value proportional to the probability flux

across the barrier. In contrast, for the superdif-

fusive systems the rate to transfer probability over

the barrier is finite even for very small times. For
the latter rðtÞ increases more slowly than in or-

dinary diffusion. However, the asymptotic rate is

higher. Note that the subordination process pen-

etrates the barrier at relatively high but almost

constant rate for the entire time, whereas for to-

pological superdiffusion the rate is initially smaller

but increases for large times beyond the subordi-

nation rate.

5. Conclusions

We discussed different generalizations of a

FPE for the case of L�eevy processes in external

force fields. We show that such generalization

can proceed along different lines (assuming
strong temperature or mobility fluctuations or

allowing for long jumps), which lead to different

forms of the generalized operator. We confined

ourselves to situations in which the correspond-

ing equations are thermodynamically sound and

their solutions approach Boltzmann equilibrium.

The different relaxation behaviors of L�eevy-pro-
cesses were investigated and compared for
the paradigmatic case of a double-well potential

and deviations from normal diffusion were

clarified.
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subordination and topological superdiffusion in the double-
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Appendix A. Fractional differentiation

The operators involved in fractional differenti-

ation are generically nonlocal. Thus, depending on

the particular choice of boundary values a variety
of generalizations exists, all of which suit a specific

need in physical applications. Depending on the

specific problem at hand different representations

of fractional differential operators may be chosen.

Here we concentrate on a fractional generaliza-

tion, Dl=2, 0 < l6 2 of the ordinary Laplace op-

erator D generically encountered in superdiffusive

systems. The reader is referred to [37] for addi-
tional information on fractional calculus in

general.

A.1. Definitions

Incidentally, the most natural way to introduce

fractional differential operators is based on the

generalization of the n-fold iterated integral of a
function f ðxÞ

aInx f ðxÞ �
1

ðn� 1Þ!

Z x

a
dyf ðyÞðx� yÞn�1

¼ 1

CðnÞ

Z x

a
dyf ðyÞðx� yÞn�1 ðA:1Þ

to arbitrary fractional order a > 0

aIa
x f ðxÞ �

1

CðaÞ

Z x

a
dyf ðyÞðx� yÞa�1; ðA:2Þ

xIa
a f ðxÞ �

1

CðaÞ

Z a

x
dyf ðyÞðy � xÞa�1; ðA:3Þ

where we distinguish between the right- and left-

handed fractional integrals aIa
x and xIa

a , respec-

tively. A fractional derivative of order l which is

frequently employed in physical applications is

given by the nth ordinary derivative of the frac-

tional integral of order 0 < n� l6 1, where

n ¼ ½l� þ 1. In other words

aDl
x f ðxÞ �

dn

dxn aIn�l
x ; ðA:4Þ

xDl
af ðxÞ �

dn

dxn xIn�l
a : ðA:5Þ

Note that since the distinction between left- and

right-handed fractional integrations is passed on

to fractional differentiation, fractional derivatives

are not symmetric with respect to interchanging

their subscripts. The definitions (A.4, A.5) imply

that

aDm
x ¼ dm

dxm
¼ ð�1ÞmxDm

a ; m ¼ 0; 1; 2; . . .

That is, fractional differentiation is proportional to

ordinary differentiation for integer values of the

exponent. 1 By sequential partial integration (A.4)

can be recast into

aDl
x f ðxÞ ¼

Xn�1
k¼0

f ðkÞðaÞ
Cð1þ k � lÞ ðx� aÞk�l

þ aIn�l
x

dn

dxn
: ðA:6Þ

Therfore, the operations of fractional differentia-

tion and integration generally do not commute.

However, if we let a ! �1 and require that

lima!�1 f ðkÞðaÞ < 1 (A.4) and (A.5) yield

�1Dl
x f ðxÞ ¼

1

Cðn� lÞ

Z x

�1
dy

f ðnÞðyÞ
ðx� yÞlþ1�n ; ðA:7Þ

xDl
1f ðxÞ ¼

1

Cðn� lÞ

Z 1

x
dy

f ðnÞðyÞ
ðy � xÞlþ1�n : ðA:8Þ

In fractional diffusion equations the symmetric

fractional generalization of the Laplace operator

frequently appears. Its one-dimensional variant

can be defined in terms of aDl
x f ðxÞ and xDl

af ðxÞ by

Dl=2 � � 1

2 cosðpl=2Þ �1Dl
x

�
þ xDl

1
�
;

0 < l6 2: ðA:9Þ

The particular case of D1=2 requires some care.

Although the definition (A.9) does not give a

useful result for l ¼ 1, since both numerator and

denominator vanish, the limit l ! 1 can be in-
terpreted consistently as will become clear below.

1 To recover symmetry for integer values of the exponent m

one frequently encounters an alternative definition of the left-

handed fractional derivative, namely xDl
af ðxÞ � ð�1Þnðdn=

dxnÞxIn�l
a which includes the prefactor ð�1Þn in the definition.
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Partial integration of (A.7, A.8) and insertion into

(A.9) yields

Dl=2f ðxÞ ¼ � 1

2Cð�lÞ cosðpl=2Þ

�
Z 1

�1
dy

f ðyÞ � f ðxÞ½ �
jx� yj1þl : ðA:10Þ

Since liml!1 Cð�lÞ cosðpl=2Þ ¼ �p=2 the opera-

tor D1=2 is well defined, i.e.

D1=2f ðxÞ ¼ 1

p

Z 1

�1
dy

f ðyÞ � f ðxÞ½ �
ðx� yÞ2

: ðA:11Þ

Clearly, D1=2 6¼ r ¼ d=dx, the ‘‘square-root’’ of
the Laplacian is symmetric, whereas the first de-

rivative is not. 2 The operators �1Dl
x , xDl

1 and
Dl=2, possess a particularly simple form when the

equation involved are Fourier transformed. If we

define the Fourier transform of f ðxÞ by

F½f �ðkÞ � eff ðkÞ ¼ Z dxeikxf ðxÞ ðA:12Þ

the transformed Eqs. (A.7), (A.8) and (A.10) read

F½�1D
lf �ðkÞ ¼ ð�ikÞleff ðkÞ; ðA:13Þ

F½Dl
1f �ðkÞ ¼ ðikÞleff ðkÞ; ðA:14Þ

F½Dl=2f �ðkÞ ¼ �jkjleff ðkÞ: ðA:15Þ
Thus, the Fourier transform of fractional dif-

ferentiation is equivalent to a multiplication by

j k jl. Because of this, the investigation of equa-

tions containing operators such as Dl=2 is usually
much easier when expressed in Fourier space. The

simplicity of Eqs. (A.13), (A.14) and (A.15) is of-

ten a reason to chose the latter as definitions of

fractional derivatives. On the other hand, the

corresponding integral representations (A.7), (A.8)

and (A.10) offer a more direct picture of the

characteristic properties of the corresponding op-

erator. For example, the Cauchy process obeys
oteppðk; tÞ ¼ � j k j eppðk; tÞ in Fourier space, a simple

equation indeed. By inverse Fourier transform this

gives

otpðx; tÞ ¼ ðD1
2pÞðx; tÞ ðA:16Þ

¼
Z

dy½wðxjyÞpðy; tÞ � wðyjxÞpðx; tÞ�;

ðA:17Þ

wðxjyÞ ¼ 1

pðx� yÞ2
: ðA:18Þ

In contrast to the Fourier representation it is ob-

vious from Eqs. (A.17) and (A.18) that the frac-

tional operator D1=2 is nonlocal, involves

singularities and appearing in the example given

above describes a jump process, a fact not readily

available in Fourier representation.

To complete the picture, let us mention that the
form (A.15) of the fractional Laplace operator can

be generalized to arbitrary dimensions n. Let f ðxÞ
be a function on Rn and eff ðkÞ the corresponding

Fourier transform, then Dl=2 defined by

F½Dl=2f �ðkÞ � � jk jl eff ðkÞ ðA:19Þ
yields upon Fourier inversion the integral repre-

sentation

Dl=2f ðxÞ ¼ �
2lC lþn

2

� �
pn=2C � l

2

� � Z 1

�1
dny

f ðyÞ � f ðxÞ½ �
jx� yjlþn :

ðA:20Þ

References

[1] H. Scher, E.W. Montroll, Phys. Rev. B 12 (1975)

2455.

[2] C. Monthus, J.-P. Bouchaud, J. Phys. A 29 (1996) 3847.

[3] B. Rinn, P. Maass, J.-P. Bouchaud, Phys. Rev. Lett. 84

(2000) 5405.

[4] I.M. Sokolov, A. Blumen, J. Klafter, Europhys. Lett. 56

(2001) 175.

[5] I.M. Sokolov, A. Blumen, J. Klafter, Physica A 302 (2001)

268.

[6] J. Klafter, M.F. Shlesinger, G. Zumofen, Phys. Today 49

(1996) 33.

[7] O.V. Bychuk, B. O’Shaughnessy, Phys. Rev. Lett. 74

(1994) 1795;

J. Chem. Phys. 101 (1994) 772.

[8] A. Ott, J.-P. Bouchaud, D. Langevin, W. Urbach, Phys.

Rev. Lett. 65 (1994) 2201.

[9] I.M. Sokolov, J. Mai, A. Blumen, Phys. Rev. Lett. 79

(1997) 857;

J. Lumin. 76–77 (1998) 377.

2 In the literature the symbol rl is frequently used instead of

Dl=2 which can lead to some confusion if l ¼ 1.

420 D. Brockmann, I.M. Sokolov / Chemical Physics 284 (2002) 409–421



[10] J. Klafter, A. Blumen, G. Zumofen, M.F. Shlesinger,

Physica A 168 (1990) 637.

[11] M. Bologna, P. Grigolini, J. Riccardi, Phys. Rev. E 60

(1999) 6435.

[12] G.M. Viswanathan, V. Afanasyev, S.V. Buldyrev, E.J.

Murphy, P.A. Prince, H.E. Stanley, Nature 381 (1996)

413.

[13] D. Brockmann, T. Geisel (submitted).

[14] P. Sazntini, Phys. Rev. E 61 (2000) 93.

[15] T.H. Solomon, E.R. Weeks, H.L. Swinney, Phys. Rev.

Lett. 71 (1993) 3975.

[16] W.D. Luedtke, U. Landman, Phys. Rev. Lett. 82 (1999)

3835.

[17] H.C. Fogedby, Phys. Rev. E 50 (1994) 1657.

[18] R. Metzler, E. Barkai, J. Klafter, Europhys. Lett. 46 (1999)

431.

[19] M.F. Shlesinger, G.M. Zaslavsky, J. Klafter, Nature 363

(1993) 31.

[20] T. Geisel, J. Nierwetberg, A. Zacherl, Phys. Rev. Lett. 54

(1985) 616.

[21] T. Geisel, A. Zacherl, G. Radons, Phys. Rev. Lett. 59

(1987) 2503.

[22] C.W. Gardiner, Handbook of Stochastic Methods, Spring-

er, Berlin, 1997.

[23] V. Seshadri, B.J. West, PNAS 79 (1982) 4501.

[24] V. Seshadri, Phys. Rev. A 36 (1987) 892.

[25] H.C. Fogedby, Phys. Rev. Lett. 73 (1994) 2517.

[26] W. Feller, An Introduction to Probability Theory and Its

Applications, vols. I and II, Willey, New York, 1971.

[27] R. Metzler, J. Klafter, Phys. Rep. 339 (2000) 1.

[28] R. Hilfer, L. Anton, Phys. Rev. E 51 (1995) 848.

[29] R. Hilfer, Phys. Rev. E 48 (1993) 2466.

[30] R. Hilfer (Ed.), Applications of Fractional Calculus in

Physics, World Scientific, Singapore, 2000.

[31] E. Barkai, Phys. Rev. E 63 (2001) 046118.

[32] I.M. Sokolov, J. Klafter, A. Blumen, Phys. Rev. E 64

(2001) 021107.

[33] I.M. Sokolov, Phys. Rev. E 63 (2001) 011104.

[34] C. Beck, Phys. Rev. Lett. 87 (2001) 180601.

[35] S. Jespersen, R. Metzler, H.C. Fogedby, Phys. Rev. E 59

(1999) 2736.

[36] D. Brockmann, T. Geisel (submitted).

[37] K.B. Oldham, J. Spanier, The Fractional Calculus,

Academic Press, New York, 1974.

D. Brockmann, I.M. Sokolov / Chemical Physics 284 (2002) 409–421 421


	Le&acute;vy flights in external force fields: from models to equations
	Introduction
	Le&acute;vy processes as stemming from subordination
	Topologically induced superdiffusion
	Comparison of systems in a double-well potential
	Conclusions
	Acknowledgements
	Fractional differentiation
	Definitions

	References


