
Neurocomputing 32}33 (2000) 643}650

The ecology of gaze shifts

Dirk Brockmann*, Theo Geisel
Max-Planck-Institut fu( r Stro(mungsforschung, Department of Nonlinear Dynamics, Postfach 2853,

Bunsenstr. 10, D-37073 Go( ttingen, Germany

Accepted 13 January 2000

Abstract

We present a phenomenological model for the generation of human visual scanpaths.
Successions of saccadic eye movements are treated as realizations of a stochastic jump process
in a random quenched salience "eld. E$ciency of the process is de"ned in terms of convergence
properties of the time-dependent probability of "xating a region in the visual environment.
Based on the assumption that the visual system minimizes the typical time needed to process
a visual scene, our theory predicts that scanpaths are geometrically similar to a prominent class
of random walks known as LeH vy #ights. The theory is well con"rmed by psychophysical
experiments. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The visual system of primates achieves highest resolution in the fovea. In the
periphery, visual resolution rapidly decreases. The loss of visual acuity is compensated
by a succession of rapid eye movements known as saccades. Saccades actively
reposition the center of gaze in order to foveate regions of interest in the visual
environment. The succession of gaze shifts is referred to as a scanpath. Two typical
scanpaths of a subject scanning a party scene are depicted in Fig. 1. A histogram of
saccadic magnitudes computed from the paths is shown as well. The main features of
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Fig. 1. Left, Center: Two typical scanpaths on different trials by the same subject. Each scanpath consists of
approximately 350 saccades. Right: Saccadic magnitude histogram calculated from the scanpaths depicted.
H denotes saccadic magnitude in degrees of visual angle.

human scanpaths can be extracted from this "gure:

f Fixations accumulate in visually salient regions.
f Scanpaths connecting salient locations di!er between trials.
f Short saccades are more frequent than long ones.

Statistically, a distance-dependent saccadic magnitude distribution implies that the
visual system requires a certain amount of time to scan the entire visual "eld. That is, if
an ensemble of scanpaths started at a certain location in the visual "eld, it requires
a certain amount of time ¹ to distribute the current positions of gaze evenly in visual
space. This lead us to investigate whether human saccadic magnitude distributions
and the scanpath geometry they entail can be understood in terms of a temporal
optimization principle, especially when operating in a natural environment. To this
end we introduce a simple model in which scanpaths are interpreted as realizations of
a stochastic process with non-local transition probabilities in a random salience
environment. The model is related to random walks in quenched disordered poten-
tials (for a review see [1]), frequently encountered in various "elds of physics such as
statistical mechanics [4] and chaotic systems [3].

Although probabilistic approaches have been applied to various problems in eye
movement research, such as the perception of ambiguous "gures [8], the speci"c
functional form of saccadic magnitude distributions has attracted surprisingly little
attention. We show that this form has a profound impact on the geometry of
scanpaths. Furthermore, our analysis suggests that visual performance under
natural conditions is primarily determined by the long-tail behavior of saccadic
magnitude probability. A most e$cient way of generating scanpaths follows a power
law in the frequency of occurrance of shift magnitudes. Power laws in saccadic
magnitude distributions relate eye movements to a prominent class of random walks
known as LeH vy #ights. LeH vy #ights play a role in systems ranging from global climate
#uctuations [2] to animal foraging behavior [9]. The LeH vy #ight nature of human
scanpaths predicted by our theory is well con"rmed by our psychophysical experi-
ments.
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2. Concepts

Consider a random walk de"ned by a symmetric single-step probability density
p(x). At discrete time step t the walker is located at X"+t

i
x
i
with probability density

P(X, t)"Sd(X!+t
i
x
i
)T. Initially, the walker is located at the origin, P(X, 0)"d(X).

The expression for P(X, t) becomes particularly handsome in Fourier-space

PI (k, t)"p8 (k)t. (1)

The quantities PI (k, t), p8 (k) denote the Fourier transforms of P(X, t) and p(x), respec-
tively. Since Dp8 (k)D41, the long-time behavior of PI (k, t) is determined by p8 (k) at low k,
corresponding to the behavior of p(x) as xPR. If p(x)Jx~(1`f), with 0(f(2 then
p8 (k) is non-analytic at k"0 and PI (k, n)+(1!DDkDk)t with k"f, D being a constant.
Thus,

PI (k, t)+e~D@k@
k
t and P(x, t)JPdk eikx~D@k@

k
t. (2)

This well-known result was "rst derived by LeH vy in the 1920s, a more rigourous proof
can be found in [1]. Eq. (2) de"nes the LeH vy stable laws of index k. If p(x) decays faster
than x~3 ( f'2), p8 (k) is analytic at k"0, the exponent k locks onto the value of 2 and
Eq. (2) re#ects the central limit theorem, P(X, t) is Gaussian, and the walk is di!usive.
On the other hand, if 0(k(2 the second moment of p(x) is in"nite and the process is
super-di!usive. If for example p(x)Jx~2, then P(X, t)JDt/(Dt2#X2), known as the
Cauchy distribution. Geometrically, di!usive walks possess a charateristic length
scale (de"ned by the variance of the single-step distribution), whereas LeH vy #ights are
scale free due to their lack of a "nite variance. The impact of the long-tail behavior of
the single-step distribution p(x) is depicted in Fig. 2. Although, in either case the
single-step distributions look similar at "rst glance, the path geometries di!er con-
siderably.

If random walks occur on a large but "nite support of size ¸ the convergence time of
P(X, t) to the stationary state is related to the relaxation properties of the lowest mode
k
0
"2p/¸ (provided that ¸AD1@k):

¹"

1

DDk
0
Dk
"

1

DA
¸

2pB
k
. (3)

This quantity will be of interest in the following. Note that if k"2 then ¹J¸2 as
expected for regular di!usion processes.

2.1. The model

The dynamical quantity of interest in our model is the probability density p(x, t) of
"xating a location x at discrete times t"1,2,32 in a visual "eld of size ¸. The
transition probability density of shifting the gaze from a point y to x is de"ned as
the product of a random quenched salience "eld s(x)'0 and a term f (Dx!yD) the
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Fig. 2. Left: Regular di!usion process generated from a single-step distribution with "nite second moment.
Right: A scale free LeH vy #ight generated from a single-step distribution with an algebraic tail p(x)Jx~2.
Insets depict the corresponding single-step distributions. Note that in both cases these functions are
monotonically decreasing and similar in shape, yet the corresponding walks di!er considerably in their
geometrical structure.

interpretation of which will be given below:

o(x D y)Js(x) f (Dx!yD). (4)

The factor s(x) in Eq. (4) quanti"es the salience at the target location x. Here, s(x) is
interpreted as the probability of attracting the gaze. The salience "eld is de"ned as

s(x)"exp(!b<(x)). (5)

An ensemble of potentials <(x) is drawn from a Gaussian distribution

p[<]Je~P $x $y V(x) C~1(@x~y@) V(y) (6)

with covariance C. We considered potentials with di!erent types of covariance. In
particular, we chose covariances with algebraic tails in the large Dx!yD regime.
Second-order staticstics of this kind were discovered in ensembles of natural images
[7]. The potential is normalized to yield an average salience of SsT"1/¸. The
parameter b controls the magnitude variation within the salience "eld.

The function f (Dx!yD) in Eq. (4) is interpreted as the probability of generating
a saccade of magnitude Dx!yD, averaged over the salience "eld ensemble. We chose
f (Dx!yD) to be monotonically decreasing, re#ecting the structure of experimentally
determined saccadic magnitude histograms, see Fig. 1. Two classes of systems are
compared. On one hand f (Dx!yD) is assumed to possess a "nite variance, represented
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by a Gaussian:

f
G
(x)"

1

2JpD
G

expA!
x2

4D
G
B. (7)

The class of processes with in"nite second moment is represented by the Cauchy
distribution:

f
C
(x)"

D
C

p(D2
C
#x2)

. (8)

In the latter case, realizations of the process are LeH vy #ights, whereas in the former
di!usive walks occur.

The relaxation properties of the system are determined by the eigenvalue spectrum
of o(x D y). For o(x D y) de"ned by Eq. (4) we "nd 04j

i
41. The convergence time ¹ of

p(x, t) is related to the largest non-unity eigenvalue j(1:

¹"![log(j)]~1. (9)

For constant s(x) Eq. (9) reduces to Eq. (3).
We compare the Gaussian and Cauchian system in terms of their relaxation times

¹
G

and ¹
C

determined by Eq. (9). To this end, we let D
G
"(¸/2p)D

C
. This gauge of

the parameters D
G

and D
C

ensures that both systems require an equal amount of time
(¹

G
"¹

C
) to reach the stationary state in a constant salience "eld.

3. Results

We generated ensembles of 10 000 salience "elds at various values b. For each
individual salience "eld we computed the convergence time of the Gaussian and the
Cauchian system. Properties of the computed convergence time histograms are
depicted in the lower left corner of Fig. 3. Irrespective of the second-order statistics of
the salience "eld ensemble and the entire range of b the Cauchian system needs less
time on average to reach the stationary state. The increase in ¹

C
in response to

a variable salience "eld is less pronounced than in ¹
G
. The Cauchian system is more

robust against variations in the salience "eld ensemble, the typical range of values for
¹

C
is orders of magnitude more narrow than the range of ¹

G
.

The temporal optimization arguments presented suggest that natural scanpaths are
geometrically similar to model scanpaths (generated by means of Eq. (4)) if one choses
a function f (Dx!yD) with an algebraic tail. On the right in Fig. 3 model scanpaths of
both, the Gaussian and Cauchian system, are shown. Here we chose the experi-
mentally measured density of "xations (Fig. 1) as the salience "eld. The predicted
similiarity mentioned above is particularly obvious in the simulated model scanpaths.
The Cauchian scanpath (bottom right in Fig. 3) looks strikingly similar to the
experimentally observed paths of Fig. 1, whereas the Gaussian scanpath has no
resemblence to natural scanpaths at all.
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Fig. 3. Upper left: Probability P(x'H) of generating a saccade of size x'H. On a double-logarithmic
scale experimentally estimated P(x'H) (denoted by squares) is well "tted by a line, implying a power law
in the saccadic magnitude distribution. Lower left: Convergence times ¹

G
(dotted lines) and ¹

C
(solid lines)

as functions of b. Typical values fall within the upper and lower curve in each case. The insets depict
one-dimensional analogues of salience "elds at two values of b (2 and 4). Upper right: Model scanpath
generated by a "nite variance random walk (Gaussian system) in an experimentally determined salience
"eld. Bottom right: Same as above, except here the scanpath is a LeH vy #ight (Cauchian system).

We "nally tested the validity and predictions of our theory by carrying out
experiments on subjects scanning natural images on a computer screen similar to the
one depicted in Fig. 1. The experiments were speci"cally designed to measure saccadic
magnitude distributions under natural conditions. The results are shown in the upper
left corner of Fig. 3. On a double-logarithmic scale the probability of generating
a saccade of size x'H is well "tted by a line, implying a power law in the saccadic
magnitude distribution.

4. Discussion

We introduced a simple phenomenological stochastic model for human scanpath
generation. The relevant quantity in our analysis is the relaxation time ¹ of the process.

Our theory predicts that scanpaths generated under natural circumstances are
similar in their nature to LeH vy #ights, i.e. possess a power law dependency in their
magnitude distribution. The predictions were based on the plausible assumption that
the visual system minimizes the time needed to scan the entire visual space. The
power-law behavior predicted by the theory is in accordance with psychophysical
experiments we carried out. Furthermore, the geometrical features of simulated
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scanpaths with a power-law saccadic magnitude function are strikingly similar to
those of natural scanpaths, whereas scanpaths with intrinsic scale are not.

The idea that the visual system adapts to an optimal sampling strategy of the visual
environment is supported by an interesting set of experiments [5] on a subject who
could not make eye movements. She compensated her oculomotoric de"cit by rapid
rotations of her head. Her visual perception though was normal and her scanpaths
were similar to those produced by humans without de"cit. Therefore, the possibility of
a power law in saccadic magnitudes due to the speci"c mechanics of the human
oculomotoric system can be ruled out.

The Markov assumption made in our model is supported by a recent experiment on
covert visual attention. The covert visual attention system is thought to feed peri-
pheral information to the saccadic system, and does not possess memory [6]. The
Markov assumption can even be relaxed. Su$ciently, rapidly decaying correlations in
successive gaze shifts do not alter the results presented here.

We conclude that a visual system producing LeH vy #ights implements an e$cient
strategy of shifting gaze in a random visual environment than any strategy employing
a typical scale in gaze shift magnitudes. Our study provides an understanding of the
ecology of scanpath generation observed in humans under natural conditions.

References

[1] J.-P. Bouchaud, A. Georges, Anomalous di!usion in disordered media: statistical mechanics, models
and physical applications, Phys. Rep. 195 (1990) 127}293.

[2] P.D. Ditlevsen, Anomalous jumping in a double-well potential, submitted for publication,
http://www.gfy.ku.dk/ 3pditlev.

[3] R. Fleischmann, T. Geisel, R. Ketzmerick, Quenched and negative Hall e!ect in periodic media:
application to antidot superlattices, Europhys. Lett. 25 (1994) 219.
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