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Abstract. Human mobility is a key factor in spatial disease dynamics and related phenomena. In compu-
tational models host mobility is typically modeled by diffusion in space or on metapolulation networks.
Alternatively, an effective force of infection across distance has been introduced to capture spatial dispersal
implicitly. Both approaches do not account for important aspects of natural human mobility, diffusion does
not capture the high degree of predictability in natural human mobility patters, e.g. the high percentage
of return movements to individuals’ base location, the effective force of infection approach assumes imme-
diate equilibrium with respect to dispersal. These conditions are typically not met in natural scenarios.
We investigate an epidemiological model that explicitly captures natural individual mobility patterns. We
systematically investigate generic dynamical features of the model on regular lattices as well as metapopu-
lation networks and show that generally the model exhibits significant dynamical differences in comparison
to ordinary diffusion and effective force of infection models. For instance, the natural human mobility model
exhibits a saturation of wave front speeds and a novel type of invasion threshold that is a function of the
return rate in mobility patterns. In the light of these new findings and with the availability of precise and
pervasive data on human mobility our approach provides a framework for a more sophisticated modeling

of spatial disease dynamics.

1 Introduction

The 2009 outbreak of a novel subtype (HIN1) of influenza
A and its subsequent worldwide spread, the recent emer-
gence of new human infectious diseases such as SARS in
2003, and the recurrent seasonal outbreaks of influenza
epidemics illustrate the growing importance of under-
standing the dynamics of human infectious diseases [1-3].
Key to understanding spatial dynamics in particular is
an accurate assessments of human mobility patterns as
infectious diseases spread among different locations due
to movements of their host. Despite recent advances [4,5]
comprehensive data on mobility is typically unavailable,
and modelers have to make reasonable assumptions when
implementing host mobility in models. Often it is as-
sumed that hosts move randomly (Fig. la) in the sys-
tem yielding reaction-diffusion dynamics [2,6-11]. An al-
ternative heuristic approach captures spatial dynamics
without explicitely accounting for host dispersal [12,13].
Instead an effective force of infection between spatially
separated populations mimics the effect of disease trans-
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mission across distance. Typically, this force is assumed
to be proportional to the prevalence of the disease in
one of the locations. Yet, because this approach lacks
the explicit incorporation of host movements, a system-
atic analysis of conditions under which it is applicable is
difficult.

Recently, human movement patterns became accessi-
ble based on pervasive mobility proxies [4,5,14-17]. One
of the key findings of these studies confirmed the intuitive
notion that humans spend most of their time in small sets
of particular locations (home, work, shopping sites, etc.)
and a person’s mobility occurs predominantly between
these individual-specific locations. Furthermore, a typical
characteristic is the existence of one or two locations that
function as an individuals base location, e.g. their homes
to which individuals typically return before they travel
to another place. A key feature of human mobility there-
fore is a bi-directional pattern in their trajectories among
small sets of salient locations contrasting diffusion pro-
cesses in which individual agents eventually visit every lo-
cation in the entire system. Topologically, natural human
mobility patterns can be described by individual mobil-
ity networks that possess a hub-and-spokes structure, in
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Fig. 1. (Color online) Models for human mobility: patches and arrows represent individual populations and travel flux, respec-
tively. (a) Diffusive dispersal: indistinguishable individuals travel randomly between different locations governed by the set of
transition rates wnm. (b) Natural human mobility: individuals labeled k travel from their base location k to connected locations

k

m and back with travel rates w® , and wf,, respectively.

which a central hub represents a base location and a lim-
ited set of places connected by spokes the set of popular
destination locations. Spreading phenomena across a large
spatial scale occurs by virtue of interactions of agents that
possess overlapping individual mobility networks.

In recent papers and in this conference we have pre-
sented a stochastic model that explicitly accounts for the
natural human mobility patterns described above [14,18].
In particular, it respects the fact that individuals typically
return to their unique base location before they travel to a
new destination (recently a similar approach has been used
by Balcan and Vespignani [19]). In the present article we
investigate properties of this model in detail and demon-
strate that the dynamic consequences of natural mobility
patterns are profound. Its basic aspects are depicted in
Figure 1. In this model mobility of the entire population
is represented by a set of overlapping individual mobil-
ity networks. In the language of complex network theory
each individual mobility pattern consists of a central node
(the base location) connected to a set of accessible destina-
tions (connected nodes) in the aforementioned hub-spokes
topology.

Although mathematical metapopulation models have
been proposed that are able to capture natural human
mobility patterns [20,21] it has remained elusive to what
extent and under which conditions such models exhibit
dynamic features that are qualitatively different from or-
dinary random walk processes. It is unclear how these
systems can be related to paradigmatic reaction-diffusion
systems.

In the present article we show that the dynamics ex-
hibits profound differences, indeed, as compared to ordi-
nary reaction-diffusion systems. We concentrate on the
analysis of epidemics on regular lattice and complex
metapopulation networks. On lattices we obtain a gen-
eralization of the paradigmatic Fisher-Kolmogorov equa-
tion that describes wave propagation in reaction-diffusion
systems. We show that the spatially continuous version
of our model exhibits travelling wave solutions and com-
pute their front velocities as a function of system pa-
rameters. Contrary to reaction-diffusion systems that ex-

hibit a monotonic and unbounded increase of the front
velocity with increasing travel rate, our model predicts
an upper bound for front velocities. We show that the
front shape strikingly differs from those predicted by
reaction-diffusion systems and is more robust in response
to changes in parameters. We introduce a commuting ratio
parameter, a quantity present only in the natural mobility
model, and investigate the front velocity as a function of
it. Analysing a fully stochastic system in regular lattices
as well as complex metapopulation networks we find that
a global outbreak of a disease is determined by a novel
threshold that is determined by the typical time spent
away from individuals’ base locations.

2 Natural human mobility and disease
dynamics

2.1 Disease dynamics on a metapopulation

We consider a system of populations labeled m = 1,..., M
and assume that in each population an epidemic outbreak
can be described by a compartmental SIR-model, i.e.

L+ Sy 520, Im 2 Ry, (1)

in which the reactions govern infection due to the interac-
tion of infected (I) with susceptible (5) individuals at rate
«, and recovery of an infected individuals at rate 3, respec-
tively. The number of individuals in a population is given
by Ny, = S+ I+ Ry, The spread of an epidemic across
the set of M populations is governed by the exchange of
individuals between populations. The most prominent and
conceptually clearest ansatz is diffusive dispersal between
populations in which individuals of each class move from
location n to m at rate win, i.e.

X 22 X, (2)

where X,, represents I,,, S, or Ry. The rates wy,, gener-
ate an equilibrium distribution N,, of individuals among
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M populations. Assuming that for a pair of populations
exchange rates are nonzero, detailed balance is fullfilled,
i.e. No/Ny = Wom/Wmn- In the following we will assume
that the system is in equilibrium with respect to disper-
sal, i.e. N,, = N,,, yielding the following deterministic
dynamical equations:

0Ly = aSyln /Ny = Bln + Y (@nmIm — wmnln)
m#n
01Sn = —aSuLn/Nu + > (WnmSm — WmnSn)
m#n
R, =N, S, —I,. (3)

Note that in the reaction-diffusion system individuals are
indistinguishable apart from their infection status and
move about randomly between all available locations m.
This approach has been employed both in complex net-
works of coupled populations as well as simplified lattice
models [11,22].

The relation to spatially continuous models is best il-
lustrated in a system of linearly aligned populations sep-
arated by distance [, at locations x = nl, uniform popula-
tion size N,, = N = const. and travel between neighboring
populations only, i.e. wypm = W1 m+wp41,m- The over-
all uniform rate w is related to the waiting time in a given
location 7 = w™1. In the limit [, 7 — 0 with D = [?/7 this
model yields the 1-d reaction-diffusion system

0j = agjs — Bj + DO%j
Ors = —ajs + DO?s, (4)

where j(z,t)l = I,/N, and s(z,t)l = S,/N,. These
equations are related to the Fisher-Kolmogorov equa-
tion [8,9]. For sufficiently localized initial conditions
j(x,t = 0) this system exhibits travelling waves with front

velocity
c=2/(a—B)/T~ Vo, (5)

that monotonically increases with the global mobility
rate w.

In order to account for individual mobility networks
that exhibit base locations and natural recurrent move-
ments we propose the following generalization of equa-
tions (1), (2): we assume that individuals can be grouped
into subpopulations defined by two indices, n and k. The
first index determines the current location n, the second
the base location k. Generally, the dispersal dynamics is
then governed by a set of reactions:

Xk

UJTLTI‘L

"X (6)

This implies that individuals of class k possess their spe-
cific dispersal rate matrix w¥,  that is conditioned on the
base location k. The rate wy,,, determines how individu-
als of type k travel from location n to m, for fixed k the
matrix wk = represents the aforementioned individual mo-

bility network for individuals of type k. The dynamical
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system, incorporating disease dynamics, is given by

o m
Skzlm+z nerliziwfnn

where I* and S* are the number of infecteds and of
susceptibles of type k located at n, respectively. N,, de-
notes the total number of individuals in location n, i.e.
N, =", (IF+ Sk + RF). Note that if the rates wk,, are in-
dependent of k, we recover the ordinary reaction-diffusion
case.

In the following we consider the case of overlapping
hub-spokes networks corresponding to commuting be-
tween base and destination locations. This imposes re-
strictions on the rates wk | it implies that w® = 0 if
k # n and k # m. That means individuals of type k
that are located at m cannot travel to n without return-
ing to k first. We further assume that w®, = w™, i.e. the
return rate is uniform for all £ and m. This assumption
implies that individuals typically spent the same amount
of time in distant locations before returning to their base!.
Alongside with bi-directionality, other aspects of human
mobility, such as hierarchical organization of visited loca-
tions, intrinsic periodicity [5] and possible non-Markovian,
anomalous in time dynamics [4,17,23] could be to large ex-
tent described by our general model. Assuming that travel
of the entire system is equilibrated, we obtain

Moo=

where N, is the stationary number of individuals located
in population n and N¥ = >on NF is the total number of
individuals of type k (i.e. they belong to base location k).

An important limiting case is a situation in which mo-
bility rates are large compared to the rates associated with
the infection and recovery dynamics, i.e. wﬁlk,w_ > a, (.
In this case detailed balance is fulfilled for infecteds and
susceptibles separately and the last terms in equation (7)
vanish. If we assume that w”, /w~ < 1 which implies
that individuals belonging to k remain at their base most
of time, equation (7) can be reduced to the effective force
of infection model [12]:

d k k m k
I =os > ermI™ = BI*, (8)

oIl =

Sp)s (7)

nk + 1 - nk)wkn/wnk Nk
L4k Wh e/ Wom

m

where I* = Y Ik is the number of infected individu-
als belonging to location k£ and coupling strengths €, =
Yo Pl /Nm are explicitly related to travel rates and
= N? /N,, is the occupation probability. Hence di-
rect coupling represents a special case of our model, see
also [21].

! This could be justified by the prevalence of home-work
commuting in human mobility obviously possesing a charac-
teristic return time. In future work it would be interesting to
consider non-equal return rates as well.
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In order to investigate the dynamic consequences of
natural human mobility patterns as captured by equa-
tion (7), we consider a system analogous to the one-
dimensional spatially homogeneous system leading to the
reaction-diffusion equation (4). We consider a 1-d lattice
of populations of size N separated by a distance [, assume
next-neighbor coupling and allow only infecteds to travel
(relaxing this restriction does not change the main results
but eases the analysis). We denote the number of infecteds
at their base location by I and the number of infecteds
at neighboring locations (n —1) and (n+1) by I, or I},
respectively. This yields

I"+ 8, & 21"

i+ Sn 5 Ly +1I7
w+

I = If (9)

where S, denotes the number of susceptibles at n. w™
and w~ denote forward and return rates, respectively.
In the corresponding dynamical system we can approx-
imate S, ;5 by their continuous counterparts: I.5, —
[F(z £ 1) = I* £ VI* + LAT*. In an equilibrated ho-
mogeneous lattice the size of a single population remains
constant during an epidemic. Introducing concentrations
up = I,/N, v, = (I} +1,)/N and w, = (I, — I,;)/N
this yields:

Ou=a(l —u—v)(u+v+DAv+IVw) +w v —2whu
O =2wtu—w v
Ow = —w™w, (10)

where D = [?/2. The third equation is solved by w ~

e tand for t > 1/w™ yields w ~ 0. We can there-
fore discard w leaving only the first two equations in (10).
Steady states are u=0,v =0 and w = w™ /(2w +w™),
v = 2wt /(2w + w7). In the non-zero steady state con-
centration of infecteds in one city is given by u +v = 1.
In order to compare this system to the reaction-diffusion
model, we calibrate both systems such as to keep the total
flux of individuals between two particular locations equal
in both systems.

3 Results

In epidemiology key questions concern conditions under
which an epidemic can spread. In this case it is generally
the first task to compute or estimate the speed at which
an epidemic proliferates throughout the entire system. On
regular lattices with dispersal only among adjacent site
this task is equivalent to computing asymptotic wavefront
speeds. In complex network topologies alternative quanti-
ties are useful, e.g. the time to reach the epidemic peak.
Below, we investigate the velocity of epidemic propagation
on a lattice, and subsequently provide results in a complex
network topology.

The European Physical Journal B

3.1 Front velocity in lattice systems

Using the traveling wave ansatz f(z,t) = g(z — ct) for
u and v, performing a linear stability analysis of the
disease-free state, we find that the system defined by equa-
tions (10) exhibits traveling wave solutions with front ve-

locity given by
2aw™ /D (2 + $—1>
c= . (11)

a+ w4+ 2wt

If the forward and return rates w™ and w™ are significantly
different, two extreme cases can be considered. In the limit
wT — 0 we find ¢ — 0 as expected, i.e. no propagation
can be sustained in the limit of individuals not leaving
their base. If the backward rate w™ is small, the system is
determined exclusively by the forward rate w™.

It is instructive to first consider a balanced system, i.e.
wt =w™ =w. In this case equation (11) simplifies to

.o 2 6Daw' (12)
a+ 3w

The front velocity as a function of infection rate o and
travel rate w as well as results of stochastic numerical
simulations are depicted in Figure 2. For comparison, the
front velocity of the reaction-diffusion scenario with the
same global travel rate w is depicted as well. The velocity
in this case is given by equation (5) which increases with
travel rate according to ~y/w. In contrast, the natural
mobility model exhibits a saturation of the front velocity
with increasing travel rate. From equation (12) it follows
that the asymptotic value of the velocity is proportional
to the reaction rate lim, .~ ¢ = 2a4/2D/3.

The existence of a saturation is a consequence of natu-
ral mobility patterns that are restricted to individual mo-
bility networks. Likewise the unbounded increase in front
velocity in a reaction-diffusion systems is a consequence of
the unnatural assumption that increasing the travel rate
also increases an individual’s access to the entire system.
In the more realistic natural mobility model increasing w
only increases the rate of travel between the base and the
two neighboring sites and does not imply faster coverage
of the entire system.

In contrast to the reaction-diffusion system with only
one rate parameter w, the natural human mobility model
possesses two travel rates, wTand w~. The total flux
between two neighboring locations is given by F,, =
wWTN 4w~ N for m = n+1. In equilibrium, detailed flux
balance requires Fy,,, = Fy,,. Comparing to the reaction-
diffusion system, the total flux is given by F?, = wN. In
order to compare the dynamics of both systems quantita-
tively it is plausible to gauge both systems such that flux
is identical, i.e.

wFN" +w™ N = wN. (13)
To simplify the analysis it is convenient to introduce a
commuting ratio ¢ = w* /w™. In a situation in which indi-
viduals dwell at their base location most of the time, the
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Fig. 2. (Color online) Front propagation in natural human mobility models. Left: front velocity c¢(w) as a function of travel
rate w for a reaction-diffusion and the natural mobility model. Numerical results of the stochastic simulations with N = 10*
agents per site are depicted by symbols for reaction-diffusion (blue) and natural mobility (red) models. Analytical results for
the reaction-diffusion system, equation (5) and natural mobility model, equation (11) are depicted by dash-dotted and dashed
lines, respectively. Right: front velocity c(e) as a function of the commuter ratio ¢ (for w = 1). The dashed curve illustrates the
analytical result, equation (15). Crosses and circles depict results of numerical solutions of the deterministic equations (7) and
stochastic simulations of the natural mobility in a spatial SI model, respectively.

commuting ratio is small, ¢ < 1. We can express forward
and return rates in terms of the global travel rate w and
the commuting ratio € according to:
1+2 1+2
wt = + Ew and w~ = * Ew.
2 2e

With these definitions expression (11) can be rewritten as

2a¢1/2D (2 + 1/2)

T 1t 212011 2e) w1

Figure 2 depicts the front velocity as a function of the
commuting ratio at the fixed travel rate (w = 1) and il-
lustrates a significant change of ¢ as a function of . Since
the commuting ratio is not defined for ordinary reaction-
diffusion systems, this effect cannot be captured in these
systems.

A surprising result in the behavior of the front velocity
for very low travel rates is depicted in Figure 3 which illus-
trates a noticeable deviation of the stochastic system from
both, the analytical prediction of equation (11) and the re-
sults of the numerical solution to equations (7). The devia-
tion of the numerical solution from the Monte Carlo simu-
lations for small w is due to the finite number of agents per
site. We observe a crossover from a linear scaling with w
(symbols) towards the solution of the deterministic system
(solid blue line). The regime of low travel rates effectively
corresponds to high infection rates (e > w). This implies
that an outbreak takes place almost instantaneously in
a neighboring location and an epidemic essentially jumps
from one location to the next. The rate of hopping is pro-
portional to Nw, i.e. to the flux of individuals between
locations, where N is the typical number of individuals
per site. The crossover from discrete to continuous be-
havior occurs when a ~ wN, i.e. w. ~ a/N. Note that
the slow convergence of the velocity towards zero with de-
creasing travel rate can be understood qualitatively: let
us consider just two locations with agents that can travel

(14)

(15)

% on 'oﬁ.‘v »
*on obv#
¢ b v # 4

Front velocity, c(w)
a

\
.
o

10° 10 107 107 107 10

Travel rate, w

Fig. 3. (Color online) Front speed in the limit of small travel
rates. Front velocity c(w) in the regime of low travel rates w.
Symbols reflect stochastic simulations for different values of
particles per site. Dashed and dash-dotted lines represent an-
alytical results given by equations (11) and (5), respectively.
Solid blue line corresponds to the numerical solution of equa-
tions (7) and the solid black line represents the analytical result
of equation (19).

between them. Without loss of generality we consider an
SI epidemic. At the beginning of the epidemic the number
of infecteds in the second location is small and we can lin-
earize the standart SI dynamics for the second population,
ie.

£ ~ aje +wjit, (16)

dt

where we neglect the backward flux of the individuals from
the second location. Integrating equation (16) by means

of the integrating factor ja(t) = e®* fot drj1(7) and using
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Fig. 4. (Color online) Front shape at the leading edge: front
shape for different global travel rates w in the reaction-diffusion
system (crosses) and natural mobility model (circles) combined
with local SIR dynamics. The insets show the same data on
linear scales.

the solution of the SI model for the first location ji(t) =
1/(1+ ae™*) with a = 1 — 51(0)/41(0) yields

14 ae—

1+4+a (17)

Ga(t) = e*w <1n +1In eo‘t> .
As t — oo we have In(1 + ae~*') ~ 0, and thus ja(t) ~
wet. The time lag between outbreaks in both populations
is given by A7(q) = ma(q) — 71(q), where 71 and 7o are
times when the concentrations of infecteds attains some
threshold ¢ in the first and second location respectively.
It follows that

At(g) ~1n L 1

aw

q
1—¢q

(18)

—1Ina,

and for ¢ = 1/2 we obtain for the velocity ¢ ~ Ar~! and

thus .
CN(—ané?w—lna> .

This expression reproduces the slow convergence of the
front velocity towards zero with decreasing travel rate
which is in agreement with the results obtained by nu-
merical solution of the deterministic problem.

(19)

3.2 Front shape

The front velocity is tightly connected with the shape of
the front at the leading edge. In Figure 4 front shapes
as obtained from numerical solutions for both reaction-
diffusion and natural mobility SIR models are shown. We
observe that the reaction-diffusion slope is much more
strongly affected by the global travel rate w. This is in
contrast to the system with natural mobility patterns in
which, just like the front velocity, the front shape con-
verges to a fixed state as w increases. The particular front
shape is related to Kendall waves that have been empiri-
cally observed [24].

The European Physical Journal B

3.3 Invasion Thresholds in natural human mobility
models

In addition to questions concerning the velocity of dis-
ease propagation, it is of fundamental importance to as-
sess the conditions under which an epidemic propagates
at all. Usually such a condition takes the form of a thresh-
old in a system parameter. The most prominent example
is the basic reproduction number, given by Ry = «/f for
an SIR model. It quantifies the number of secondary cases
caused by a single infected individual in a totally suscepti-
ble population [1]. If Ry > 1 an outbreak occurs, otherwise
the epidemic wanes. Another threshold parameter in the
metapopulation reaction-diffusion framework is the global
invasion threshold. It represents the minimal required flux
of individuals traveling between two locations [11] in order
for a disease to propagate spatially.

One of the most striking properties of the natural mo-
bility model of equations (7) is the existence of a novel
type of threshold that is only determined by the return
rate w™, or equivalently by the typical time an individual
spends at a distant location. The existence of this thresh-
old is evident from Figure 5 that depicts the attack ratio
p (the total fraction of infecteds during an epidemic) as a
function of the return rate w™ on (a) a one-dimensional
lattice, (b) an Erdds-Rényi network and (c¢) an uncorre-
lated scale-free network. For low return rates the attack
ratio is close to unity; as expected a global outbreak oc-
curs. However, with growing values of the return rate, the
attack ratio drops almost to zero, i.e. no global outbreak
occurs. The regime of high return rates corresponds to
small dwelling times at distant locations. This implies that
an infected does not have sufficient time to transfer the
disease to susceptibles in unaffected locations before re-
turning home. This effect is absent in reaction-diffusion
systems. This novel type of threshold is a direct conse-
quence of the properties of natural human mobility.

To assess the mutual impact of all travel parameters,
i.e. the forward and return travel rates as well as the total
flux on the dynamics we calculated the attack ratio for
various parameter values on a homogeneous lattice. The
results are presented in Figure 5. Note that our model
exhibits the global w-limited invasion threshold that is
also present in ordinary reaction-diffusion systems. This
threshold corresponds to the lower-left transition region
in the figure. However, even for large total flux w, the
system exhibits a global outbreak only if the return rate
w™ is sufficiently small. This occurs when the return rate
crosses the transition line in the upper region of the fig-
ure. Increasing the return rate the system enters a region
that lacks a global outbreak. Consequently, only the re-
turn rate w™ is a limiting factor. This novel threshold can
be estimated analytically. In the same spirit as introduced
recently [18,22] we find the following threshold relation:

Nw
B+w-

(Ro—1) > 1. (20)

The inverse of the sum of return rate w™ and recovery
rate § provides the typical time an infected individual
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Fig. 5. (Color online) A novel type of invasion threshold. Left: the panel depicts the results of stochastic simulations of an
SIR epidemic in combination with natural mobility patterns. The attack ratio p(w™) as a function of the return travel rate w™
exhibits a critical transition and vanishes for return rates exceeding a critical value. The function p(w™) is shown for a 1-d lattice
system with 100 sites with N agents/site. Insets: (a) p(w™) for a scale-free network (y = 1.5) of 10° nodes populated uniformly
with (N) = 250, kmin = 5 and kmax = 50; (b) p(w™) for an Erdds-Rényi network with 500 nodes and (k) = 10. Results were
averaged over 50 realizations. The global w travel rate was kept constant at w = 1. Epidemic parameters are o« = 1, 8 = 0.1.
Right: the attack ratio as a function of both travel rate parameters w® for a lattice system. Solid lines represent curves of
constant travel rate w at logarithmic spacing. The total flux increases from bottom left to top right. Green regions corresponds

to sustained outbreaks, red regions denote the extinction regime. Epidemic rates, lattice and averaging parameters are the same
as in the left panel.
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Fig. 6. (Color online) Effects in stochastic system. Left: the behavior of the attack ratio p as a function of the ratio of return
rate w™ and total rate w. Other parameters are identical to those of the system in Figure 5. Right: epidemic peak time 7(w™)
as a function of w™ for the natural mobility model (circles) and ordinary reaction-diffusion (dashed line) on a scale-free network
(with scaling exponent v = 1.5 and 10® nodes with an average of (N) = 250 individuals per site). The curves show averages

over 50 stochastic realizations.

spends on a distant location in the infected status. Using Note, that from (20) the empirically observed scaling
the relation w = 2wTw™/(2w™ + w™) (compare (14)), we p = p(Nw/w™) (for B8 <« w™) follows, see Figures 5
can write explicitly and 6. The figures exhibit the expected collapse of the
data according to this scaling. The pronounced difference

between ordinary reaction-diffusion systems and the nat-

e wt ural mobility model is also captured in Figure 6 which

5 < —2N(Ro—1)—-1. (21) illustrates the dependenice of the epidemic peak time
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Fig. 7. (Color online) Natural human mobility and disease dynamics in realistic scenarios. (A): the minimal spanning tree of
a multiscale mobility network in the United States, used for numerical simulations in (B) and (C). This network represents the
skeleton of the most important transportation routes in a more complete network [4,25]. (B), (C): comparison of the evolution
of the SIR epidemic with initial outbreak in Los Angeles for the natural mobility (bi-directional) model with w™ = w* (B) and
an ordinary random walk model with identical global rate w (C). Snapshots of the number of infecteds after approximately
4 weeks. Color encodes the relative number of infecteds per county from high (red) to low (blue).

T = [I(t)tdt/ [I(t)dt on the return rate. The figure
shows that varying the return rate yields an extreme in-
crease in the peak time in the natural mobility model, in
contrast to the random walk model.

4 Discussion

An unprecedented amount of information on human mo-
bility available today calls for adequate models that cor-
rectly capture the key features of natural human mobility
in order to understand, describe and predict the dynamics
of human mediated contagion phenomena. In the present
work we pursued this goal and formulated an approach
that can account for important features of natural human
mobility that are intuitive and observed empirically. The
model is based on a metapopulation approach assuming
well-mixed local populations and explicity incorporates in-
dividual mobility patterns conditional on base or home
location. We considered regular bi-directional movements
of the host between base locations and accessible desti-
nations, systematically analyzed the model and compared
it to established modeling approaches, e.g. effective force
of infection and random walk systems. We demonstrated
that the latter are limiting cases of the natural human
mobility model at low and high travel rates, respectively.
For a regular lattice we derived a generalization of the
Fisher-Kolmogorov equation and found that contrary to
the reaction-diffusion approach, the front velocity of the
epidemic does not increase unboundedly with increasing
global travel rate, but saturates at a maximum level.
Although results for lattice and artificial random net-
work topologies are extremely helpful in gaining funda-
mental insight into the consequences of natural human
mobility patterns on the dynamics of disease spread, they
at best mimic real world scenarios. A future task will be
to investigate to what level these novel effects prevail in
more realistic settings, i.e. real world mobility networks on
which individuals move and transmit disease. We hypothe-
size that effects that are so dominant in parsimonious sys-
tems of the type described by the model of equations (7)
will also be present in more complex settings. Evidence for
this has recently been revealed in a multiscale metapop-
ulation system [19]. In order to illustrate the pronounced
difference in dynamic disease patterns that are generated

by ordinary reaction diffusion models on the one hand and
natural human mobility models on the other, we simulated
both systems on the backbone of a realistic, multiscale
mobility network in a real geographic setting?. Figure 7
illustrates snapshots of the timecourse of disease spread
generated by both models. Nodes in the network are ap-
prox. 3000 counties in continental United States and links
between them resemble the traffic flux. We observe a sig-
nificantly smaller spreading speed in the natural mobility
scenario compared with network diffusion model. This im-
plies that estimates of spreading speeds, also in such more
realistic settings, could have been overestimated in the
past by models that rely on random walks as dispersal
mechanism.

Although the study of natural human mobility on dis-
ease dynamics and related human mediated contagion pro-
cesses requires more attention in future investigations,
the results presented here as well as in our previous
work [14,18] will serve as a useful guide for developing
more reliable large scale computational models for disease
dynamics. The substantial differences of ordinary random
walk and the novel type of natural human mobility disper-
sal show that dispersal mechanisms are among the most
important modeling ingredients and thus require partic-
ular care when implemented in large scale computational
models designed to make quantitative forecasts.

The authors acknowledges support from the Volkswagen Foun-
dation and EU-FP7 grant Epiwork and would like to thank W.
Noyes, F. Merkhoffer, B. Franke and B. Buchheister for valu-
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