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Abstract. We investigate the dynamic impact of heterogeneous environments
on superdiffusive random walks known as Lévy flights. We devote particular
attention to the relative weight of source and target locations on the rates for
spatial displacements of the random walk. Unlike ordinary random walks which
are slowed down for all values of the relative weight of source and target, non-local
superdiffusive processes show distinct regimes of attenuation and acceleration
for increased source and target weight, respectively. Consequently, spatial
inhomogeneities can facilitate the spread of superdiffusive processes, in contrast
to the common belief that external disorder generally slows down stochastic
processes. Our results are based on a novel type of fractional Fokker–Planck
equation which we investigate numerically and by perturbation theory for weak
disorder.

A particle performing ordinary diffusion is typically characterized by a spatiotemporal
scaling relation |X(t)| ∼ t1/2. An increasing number of physical and biological systems are in
conflict with this relation and exhibit anomalous diffusion. Whenever the spatiotemporal scaling
relation |X(t)| ∼ t1/µ with an exponent 0 < µ < 2 a system is said to exhibit superdiffusive
behaviour. Superdiffusion has been discovered in a wide range of systems, for instance chaotic
dynamical systems [1], particles in turbulent flows [2], saccadic eye movements [3], trajectories
of foraging animals [4], and very recently in the geographic dispersal of bank notes [5].

Theoretically, superdiffusion is often accounted for by scale free random walks known as
Lévy flights for which successive spatial displacements �x are drawn from a probability density
function (pdf) with an algebraic tail, i.e., p(�x) ∼ |�x|−d−µ, where d is the spatial dimension
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Figure 1. Random walk processes in inhomogeneous salience fields s(x) in two
(a) and one (b) dimensions. Source and target locations of a random jump are
denoted by y and x, respectively.

and the Lévy exponent µ < 2, such that the variance of �x is divergent [6]. Embedded in the
context of continuous time random walks (CTRW) one can show that the dynamics of the pdf of
finding a superdiffusive particle at position x at time t is governed by a fractional generalization
of the diffusion equation

∂tp(x, t) = Dµ�µ/2p(x, t), (1)

in which the ordinary Laplacian � is replaced by the fractional operator �µ/2, a non-local integral
operator, the action of which is equivalent to a multiplication by −|k|µ in Fourier space. The
constant Dµ is the generalized diffusion coefficient.

A process governed by (1) is spatially homogeneous and isotropic, as the probability rate
w(y|x) of a displacement from x to y depends only on distance, i.e., w(y|x) ∝ |x − y|−(d+µ).

Numerous random processes, however, occur on spatially disordered substrates or evolve
in the presence of quenched spatial inhomogeneities. Depending on the underlying physical
or biological system, one obtains various generalizations of (1) which incorporate the spatial
structure. In the generalized Langevin approach [7]–[9] an additional force term −∇F on
the right hand side of (1) accounts for an external position dependent force field F(x). In
topologically superdiffusive systems, such as intersegment transfer of gene regulatory enzymes
on DNA strands [10]–[12], the transition rate is modified by a Boltzmann factor, i.e., w(y|x) ∝
|x − y|−(d+µ) × exp −β[V(y) − V(x)]/2, where V(x) is a position dependent potential and β

is the inverse temperature. In subordinated superdiffusive processes, an ordinary diffusion process
subjected to an external force is sampled at highly variable operational time intervals [13]. All
three systems exhibit very different response properties to the imposed spatial structure [14], but
converge to the same Fokker–Planck equation in the limit of ordinary diffusion.

Here, we investigate the dynamic impact of heterogeneous environments and devote
particular attention to the relative impact of source and target locations on the rates w(x|y)

for spatial displacements of the random walk (see figure 1). We define the spatial inhomogeneity
in terms of the attractivity or salience s(x) > 0 of a location x. For large and small values of
s(x), the location x is attractive and unattractive, respectively. We assume that in equilibrium
a walker’s stationary probability p�(x) of being at a location x is proportional to the salience
at x, i.e., p�(x) ∝ s(x). In that respect, the salience field can be defined operationally as the
likelyhood of finding a walker at site x. Furthermore, we assume that a transition from y to x is
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more likely to occur when the salience is large at the target location x, and less likely to occur
when the salience is large at the source location y. This leads to a transition rate

w(x|y) = 1

τ
sc(x)f(|x − y|)sc−1(y), (2)

where τ is a time constant and the sandwiched term f(|x − y|) ∝ |x − y|−(d+µ) with 0 < µ � 2
accounts for Lévy flight jump lengths. Inserting (2) into the master equation

∂tp(x, t) =
∫

dyw(x|y)p(y, t) − w(y|x)p(y, t), (3)

one can see that detailed balance is fullfilled and that the stationary solution if it exists is
proportional to the salience. The central parameter in our analysis is the weight parameter
0 � c � 1, which quantifies the relative impact of source and target salience on the dynamics.
When c = 1 a transition y → x only depends on the salience at the target site and is independent
of the salience at the source, when c = 0 the salience of the target site has no influence on
the transition and the rate is decreased with increasing salience at the source. The intermediate
case c = 1/2 is equivalent to topological superdiffusion approach with a salience given by a
Boltzmann factor s(x) = e−βV(x).

In combination with the rate (2) the master equation (3) is equivalent to the fractional
Fokker–Planck equation

∂tp = Dsc�µ/2s(c−1)p − Dpsc−1�µ/2sc, (4)

where p = p(x, t), s = s(x) and D is a generalized diffusion coefficient. The fractional Laplacian
is defined by

�µ/2f(x) = Cµ

∫
dy

f(y) − f(x)

|x − y|d+µ
,

with Cµ = 2µπ−n/2�((µ + n)/2)/�(−µ/2). In Fourier space �µ/2 corresponds to multiplication
by −|k|µ: F{�µ/2f }(k) = −|k|µF{f }(k). Note that the fractional Fokker–Planck equation (4)
is equivalent to a number of known stochastic processes for specific choices of the parameters
c and µ. For instance when s(x) = constant, (4) is equivalent to free superdiffusion, i.e., (1).
When c = 1/2 and µ = 2, (4) reads ∂tp = −∇F p + �p, with F(x) = −V ′(x) and V(x) =
−β−1 log s(x), i.e., diffusion in an external force field. When c = 0, (4) reads ∂tp = D�µ/2p/s,
which is equivalent to generalized multiplicative Langevin dynamics for the process X(t), i.e.,
dX = D(X)dLµ with D(X) = √

2(exp βV(X)/2)/D and Lµ(t) is a homogeneous Lévy stable
process.

In the following, we investigate the relaxation properties of one-dimensional processes
governed by the fractional Fokker–Planck equation (4). It is convenient to make a transformation
of variables ψ = s1/2p and rewrite the dynamics as a generalized Schrödinger equation
∂tψ = Hψ with a Hamiltonian

Hψ = sc−1/2�µ/2sc−1/2ψ − ψsc−1�µ/2sc, (5)

possessing identical spectral properties.
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We model inhomogeneities as salience fields of the type s = exp (−εv), where v = v(x) is a
random potential with zero mean and unit variance. The parameter ε > 0 quantifies the strength
of the inhomogeneity. For v we chose random phase potentials defined by

v(x) = 1

2π

∫
dk φ(k) eiθ(k)−ikx. (6)

Here, the phase θ(k) is uniformly distributed on the interval (0, 2π] and the amplitude is given
by the correlation spectrum S(k), φ(k)φ(k′) = 2πS(k)δ(k − k′), which we chose to be Gaussian
with a correlation length ξ: S(k) = 2ξ exp (−k2ξ2/π). For small ε we can expand (5) up to the
second order and obtain a Hamiltonian of the form H = �µ/2 + Û which we can treat perturbation
theoretically to obtain a spectrum of the form E(k) ≈ −Dµ,c(k; ε)|k|µ. Here, Dµ,c(k; ε) describes
the relaxation properties on the corresponding scale length λ = k−1. In the limit of vanishing
potential the generalized diffusion coefficient is identical to the diffusion coefficient D of the
free system. Typically, a random spatial inhomogeneity slows down a random process, and
one generally expects Dµ,c(k; ε) to be smaller than Dµ,c(k; ε = 0). Up to second order in ε

we obtain

Dµ,c(k; ε)/D = 1 − ε2Gµ,c(k), (7)

where Gµ,c(k) = 1
2π

∫
dqS(q)gµ,c(k/q) and

gµ,c(z) = −2(c − 1/2)2 +
1

zµ
{2c(c − 1) − (c − 1/2)2(|1 − z|µ + |1 + z|µ)

+ [(c − 1/2)(zµ + |1 + z|µ) − c]2/(|1 + z|µ − zµ)

+ [(c − 1/2)(zµ + |1 − z|µ) − c]2/(|1 − z|µ − zµ)}. (8)

The limit k → 0 yields the long scale asymptotics for the process for which we obtain

Gµ,c(0) =
{

1/2 − c2, 0 < µ < 2,

1/2 + 2c2, µ = 2.
(9)

This result indicates that with increasing influence of the target salience (increasing values of c)
superdiffusive processes (µ < 2) exhibit the opposite behaviour as ordinary diffusion processes
(µ = 2). As c is increased Gµ,c(0) increases as well for ordinary diffusion, which means that
these processes are attenuated more strongly. Quite contrary to superdiffusive processes, for
which a more pronounced target influence decreases Gµ,c(0). This implies that slowing down of
superdiffusive processes becomes weaker as the target weight in the rates is increased. Note also
that for weak potentials the magnitude of this acceleration is independent of the Lévy exponent
µ, see figure 2. Only when c = 0, and target salience has no impact on the transition rate,
are all processes slowed down by the same amount, i.e., Gµ,0(0) = 1/2. The counterintuitive
independence of the generalized diffusion coefficient as function of µ is only attained in the
infinite system, for disscussion see also [10].

Note that, as c is increased for µ < 2, the function Gµ,c(0) even becomes negative for
c > ccrit = 1/

√
2. This implies that these processes are no longer slowed down by the spatial

inhomogeneity but rather accelerated, as a negative value for Gµ,c(0) implies a diffusion
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Figure 2. The impact of source and target location on the asymtotics of random
walk processes. The generalized diffusion coefficient depends quadratically on the
magnitude ε of the inhomogeneity: Dµ,c = 1 − Gµ,c(0)ε2. The pre-factor Gµ,c(0)

quantifies the impact of the spatial inhomogeneity, i.e., when Gµ,c(0) > 0 the
process is slowed down, when Gµ,c(0) < 0 the process is accelerated. The two
lines depict Gµ,c(0) as a function of the weight parameter c for ordinary diffusion
(µ = 2, upper line) and Lévy flights (µ < 2, lower line). As c is increased
(increasing weight of the target location), ordinary diffusion is slowed down
more strongly contrary to the Lévy flights for which attenuation decreases until
a critical value of ccrit = 1/

√
2 is reached (denoted by small circle). Beyond this

point Lévy flights are accelerated by the external inhomogeneity.

coefficient larger than the one for free superdiffusion, i.e., Dµ,c(k → 0; ε) > D. Consequently,
the common notion that random processes are typically slowed down by spatial inhomogeneities
is not valid when superdiffusive processes are involved. Unlike ordinary diffusion processes that
are trapped in localized regions of high salience, non-local Lévy flights can jump among these
regions. With increasing impact of the target location this effective transport can be faster as
intermediate regions of low salience are not explored.

For large ε, we computed the generalized diffusion coefficient Dµ,c(ε) numerically for
three periodic and one random phase potential: a cosine potential v(x) = √

2 cos (x/λ), a
potential with localized potential minima and one with localized potential peaks, for which
v(x) = ±a cosγ (x/λ) + b (a, b > 0, γ = 32), and a potential defined by (6) with a gaussian
spectrum. The results are depicted in figure 3.

For c = 0 (i.e. full weight of source location) the processes in a given environment behave
similarly, independent of the exponent µ (figure 3(a)), ordinary diffusion and all superdiffusive
processes exhibit the same quadratic decrease of Dµ,c with ε in a fixed potential. For c = 1/2
(figure 3(b)) only the superdiffusive processes exhibit an identical response to a given potential,
the response of the ordinary diffusion process differs. When c is increased beyond the critical
value the difference between ordinary diffusion and Lévy flights becomes maximal and changes
qualitatively (figure 3(c)). In this regime ordinary diffusion processes are still slowed down by the
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Figure 3. Generalized diffusion coefficient Dµ,c as a function of the magnitude
ε of the salience field s(x) = exp (−εv(x)). The function Dµ,c is shown for four
types of potentials, a cosine potential (A), potentials with localized maxima and
minima, (B and C, respectively) and a random phase potential (D). Potentials are
displayed on the top left panel. Results for three values of the weight parameter
c are presented on the panel (a) c = 0 and (b) c = 0.5 and (c) c = 1. Dashed
line and dash-dotted lines are analytical results for µ = 2 and 0 < µ < 2 we
obtained from perturbation theory (9). Each type of symbol corresponds to one
Lévy exponent: ◦, µ = 0.5; ♦, µ = 1.0; 
, µ = 1.5; ��, µ = 2.0. For c = 1 in
contrast to diffusive processes, which are attenuated, the superdiffusive ones are
enhanced by inhomogeneity.

spatial inhomogeneity as opposed to the Lévy flights which exhibits an increase in the diffusion
coefficient with increasing potential strength and are thus accelerated. For small values of ε the
numerics agree well with our results obtained by the perturbation theory, above (i.e. (9)). Despite
the fact that for all values of µ < 2, the curves collapse on one single function, Lévy flights are
sensitive to the potential shape. The deviations of the processes in random phase potential with
small µ values when c = 0 (figure 3(a)) and large µ values when c = 1 (figure 3(c)) are due to
finite-size effects explained below.

The above considerations were restricted solely to infinite systems. A key question is how
these processes behave in finite systems and to what extent finite size effects play a role. Therefore,
we investigate the relaxation properties in finite systems of length 2πL, modulated by the periodic
potential of the wavelength 2πλ. To this end we consider the quantity

δτ = τ/τfree − 1, (10)

where τ is the relaxation time of the process and τfree is the relaxation time of the same process
without spatial inhomogeneity. In a finite system the corresponding Hamiltonian has a discrete
spectrum. The continuous Bloch bands (for the infinite system) split into M = L/λ discrete
eigenvalues En(qm), n = 0..∞, m = 1..M, where qm = mλ/L is a Bloch phase. The smallest
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Figure 4. The impact of the heterogeneity on the relaxation time of the processes
δt ∼ gµ,c(λ/L) with different power-law exponents µ, in dependence on the size
of the system 2πL for the cosine potential with period 2πλ and three values of
the weight parameter c: (a) c = 0 and (b) c = 0.5 and (c) c = 1. Dashed lines
denote the large scale limits, according to (9). With increasing L/λ ratio when
c = 1 acceleration (negative values of gµ,c) occurs for larger µ exponents.

Bloch phase is given by q1 = λ/L. The relaxation time is related to the smallest eigenvalue of
the spectrum by τ = 1/E0(λ/L). Considering (10) and recalling that τfree = Lµ we obtain

δτ ≈ ε22
∑
m>0

gµ,c(mλ/L)|v̂m|2,

which reads δτ ∼ ε2gµ,c(λ/L) for the cosine potential. See figure 4 for three values of c = 0, 0.5
and 1. Small values of δτ correspond to a small effect of the inhomogeneity. For c = 0
(figure 4(a)), the ordinary diffusion process exhibits the smallest value of δτ, which implies
that in situations in which the source salience is important, diffusion relaxes fastest. On the
contrary, for c = 1 (figure 4(c)) strongly superdiffusive processes (i.e. µ → 0) exhibit a small
δτ. Only when both, source and target possess an equal impact on the jump rates (i.e. c = 0.5
(figure 4(b)), δτ exhibits a minimum for intermediate values of the Lévy exponent µ [15]. In
finite systems there is a continuous transition from attenuation to acceleration with varying
exponent µ. In figure 4(c) one can see, that only Lévy flights with small exponents can be
accelerated.

We considered the consequences of the relative weight of source and target locations in
one-dimensional random walk processes, evolving in inhomogeneous environment. Our analysis
revealed essential differences between superdiffusive Lévy flights and ordinary random walks
when they occur in regular and random spatial inhomogeneities. Unlike ordinary random walks,
Lévy flights can be accelerated when the influence of the target salience is sufficiently large, which
may shed a new light on optimal search strategies in heterogeneous landscapes, and dispersal
phenomena in population dynamical systems and various physical and biological contexts.
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